Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data


Mars’s seismic activity and noise have been monitored since January 2019 by the seismometer of the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander. At night, Mars is extremely quiet; seismic noise is about 500 times lower than Earth’s microseismic noise at periods between 4 s and 30 s. The recorded seismic noise increases during the day due to ground deformations induced by convective atmospheric vortices and ground-transferred wind-generated lander noise. Here we constrain properties of the crust beneath InSight, using signals from atmospheric vortices and from the hammering of InSight’s Heat Flow and Physical Properties (HP3) instrument, as well as the three largest Marsquakes detected as of September 2019. From receiver function analysis, we infer that the uppermost 8–11 km of the crust is highly altered and/or fractured. We measure the crustal diffusivity and intrinsic attenuation using multiscattering analysis and find that seismic attenuation is about three times larger than on the Moon, which suggests that the crust contains small amounts of volatiles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Spectrograms of the vertical, north and east components of acceleration from 0.02 to 50 Hz versus lmst for typical sol 194–195.
Fig. 2: Statistical comparison of Martian, terrestrial and lunar seismic noise.
Fig. 3: Pressure and seismic signature of two convective vortices compared with models.
Fig. 4: Inversion results of the regolith thickness and VP of the underlying bedrock.
Fig. 5: Comparison of seismic scattering, attenuation and seismograms on Earth, Moon and Mars.
Fig. 6: RF analysis for the Martian upper crust.

Data availability

All InSight SEIS data63 used in this paper are available from the IPGP Data Center, IRIS-DMC and NASA PDS; all InSight APSS data are available from NASA PDS ( The data used for Fig. 2 have been obtained from IRIS/DMC for Black Forest Observatory64 and from IPGP Data Center for lunar data (Code XA, The data displayed in Fig. 5 correspond to the following events. A is a broadband (1–10-Hz) shallow Moonquake waveform recorded on 13 March 1973, at Apollo Station 15; the inferred hypocentre is latitude −84°, longitude −134° (ref. 65). B are S0128 and S0173 events described in the main text. C is a broadband (1–10-Hz) regional crustal earthquake waveform recorded on 28 April 2016, at the broadband station ATE (; the hypocentre is latitude 46.04°, longitude −1.04°, depth 15 km (BCSF bulletin, D is a broadband (1–10-Hz) waveform recorded on 22 February 2000, at Mount St. Helens station ESD66 (now EDM); the hypocentre is latitude 46.1472°, longitude −122.1457°, depth = 10.4 km (event 10495398, PNSN bulletin, P and S arrival times for S0128a, S0173a and S0235b are from the MQS47 catalogue27. The S–P travel-time difference used in the scattering analysis is 75 s, compatible with the reported27 value of 84 ± 28 s. Subsets for the models proposed for the subsurface and a summary for the upper crust are available (Supplementary Tables 1 and 2 for subsurface, Supplementary Table 3 for upper crust). See Supplementary Discussions 2 and 4 respectively for more details.

Code availability

See Methods for publicly available codes and for associated algorithms. The multiple-scattering simulation codes used in Supplementary Discussion 3 are available on request from L.M. (


  1. 1.

    Banerdt, B. et al. Initial results from the InSight mission on Mars. Nat. Geosci. (2020).

  2. 2.

    Golombek, M. et al. Geology of the InSight landing site on Mars. Nat. Commun. (2020).

  3. 3.

    Anderson, D. L. et al. Seismology on Mars. J. Geophys. Res. 82, 4524–4546 (1977).

  4. 4.

    Giardini, D. et al. The seismicity of Mars. Nat. Geosci. (2020).

  5. 5.

    Lognonné, P. et al. SEIS: InSight’s Seismic Experiment for Internal Structure of Mars. Space Sci. Rev. 215, 12 (2019).

  6. 6.

    Banfield, D. et al. InSight Auxiliary Payload Sensor Suite (APSS). Space Sci. Rev. 215, 4 (2019).

  7. 7.

    Banfield, D. et al. The atmosphere of Mars as observed by InSight. Nat. Geosci. (2020).

  8. 8.

    Trebi-Ollennu, A. et al. InSight Mars lander robotics instrument deployment system. Space Sci. Rev. 214, 93 (2018).

  9. 9.

    Maki, J. N. et al. The color cameras on the InSight lander. Space Sci. Rev. 214, 105 (2018).

  10. 10.

    Peterson J. Observations and Modelling of Background Seismic Noise Open-File Report 93-322 (US Geological Survey, 1993).

  11. 11.

    Lognonné, P. & Johnson, C. L. in Treatise on Geophysics 2nd edn, Vol. 10 (ed. Schubert, G.) 65–120 (Elsevier, 2015).

  12. 12.

    Spiga, A. et al. Atmospheric science with InSight. Space Sci. Rev. 214, 109 (2018).

  13. 13.

    Lognonné, P. & Mosser, B. Planetary seismology. Surv. Geophys. 14, 239–302 (1993).

  14. 14.

    Murdoch, N. et al. Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. 211, 429–455 (2017).

  15. 15.

    Kenda, B. et al. Modeling of ground deformation and shallow surface waves generated by Martian dust devils and perspectives for near-surface structure inversion. Space Sci. Rev. 211, 501–524 (2017).

  16. 16.

    Murdoch, N. et al. Estimations of the seismic pressure noise on Mars determined from Large Eddy Simulations and demonstration of pressure decorrelation techniques for the InSight mission. Space Sci. Rev. 211, 457–483 (2017).

  17. 17.

    Murdoch, N. et al. Flexible mode modelling of the InSight lander and consequences for the SEIS instrument. Space Sci. Rev. 214, 117 (2019).

  18. 18.

    Mimoun, D. et al. The noise model of the SEIS seismometer of the InSight mission to Mars. Space Sci. Rev. 211, 383–428 (2017).

  19. 19.

    Fayon, L. et al. A numerical model of the SEIS leveling system transfer matrix and resonances: application to SEIS rotational seismology and dynamic ground Interaction. Space Sci. Rev. 214, 119 (2018).

  20. 20.

    Spohn, T. et al. The heat flow and physical properties package (HP3) for the InSight mission. Space Sci. Rev. 214, 96 (2018).

  21. 21.

    Kedar, S. et al. Analysis of regolith properties using seismic signals generated by InSight’s HP3 penetrator. Space Sci. Rev. 211, 315 (2017).

  22. 22.

    Brinkman, N. et al. The first active seismic experiment on Mars to characterize the shallow subsurface structure at the InSight landing site. SEG Tech. Prog. Expand. Abstr. 4756–4760 (2019).

  23. 23.

    Sorrells, G. G. A preliminary investigation into the relationship between long-period seismic noise and local fluctuations in the atmospheric pressure field. Geophys. J. Int. 26, 71–82 (1971).

  24. 24.

    Lorenz, R. D. et al. Seismometer detection of dust devil vortices by ground tilt. Bull. Seism. Soc. Am. 105, 3015–3023 (2015).

  25. 25.

    Morgan, P. et al. A pre-landing assessment of regolith properties at the InSight landing site. Space Sci. Rev. 214, 104 (2018).

  26. 26.

    Delage, P. et al. An investigation of the mechanical properties of some Martian regolith simulants with respect to the surface properties at the InSight mission landing site. Space Sci. Rev. 211, 191–213 (2017).

  27. 27.

    InSight Marsquake Service Mars Seismic Catalogue: InSight Mission V1 2/1/2020 (ETHZ, IPGP, JPL, ICL, ISAE-Supaero, MPS, Univ. Bristol, 2020).

  28. 28.

    Dainty, A. M. et al. Seismic scattering and shallow structure of the moon in oceanus procellarum. Moon 9, 11–29 (1974).

  29. 29.

    Margerin, L., Campillo, M., Van Tiggelen, B. & Hennino, R. Energy partition of seismic coda waves in layered media: theory and application to Pinyon Flats observatory. Geophys. J. Int. 177, 571–585 (2009).

  30. 30.

    Margerin, L., Campillo, M., Shapiro, N. & van Tiggelen, B. A. Residence time of diffuse waves in the crust as a physical interpretation of coda Q: application to seismograms recorded in Mexico. Geophys. J. Int. 138, 343–352 (1999).

  31. 31.

    Romanowicz, B. A. & Mitchell, B. J. in Treatise on Geophysics 2nd edn, Vol. 1 (ed. Schubert, G.) 789–827 (Elsevier, 2015).

  32. 32.

    Gillet, K., Margerin, L., Calvet, M. & Monnereau, M. Scattering attenuation profile of the moon: implications for shallow moonquakes and the structure of the megaregolith. Phys. Earth Planet. Int. 262, 28–40 (2017).

  33. 33.

    Langston, C. A. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J. Geophys. Res. 84, 4749–4762 (1979).

  34. 34.

    Abt, D. L. et al. North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. J. Geophys. Res. 115, B09301 (2010).

  35. 35.

    Vinnik, L., Chenet, H., Gagnepain-Beyneix, J. & Lognonné, P. First seismic receiver functions on the Moon. Geophys. Res. Lett. 28, 3031–3034 (2001).

  36. 36.

    Lognonné, P., Gagnepain-Beyneix, J. & Chenet, H. A new seismic model of the Moon: implication in terms of structure, formation and evolution. Earth Planet. Sci. Lett. 112, 27–44 (2003).

  37. 37.

    Knapmeyer-Endrun, B., Ceylan, S. & van Driel, M. Crustal S-wave velocity from apparent incidence angles: a case study in preparation of InSight. Space Sci. Rev. 214, 83 (2018).

  38. 38.

    Kolb, J. & Lekic, V. Receiver function deconvolution using transdimensional hierarchical Bayesian inference. Geophys. J. Int. 197, 1719–1735 (2014).

  39. 39.

    Panning, M. P. et al. Planned products of the Mars Structure Service for the InSight mission, Mars. Space Sci. Rev. 211, 611–650 (2017).

  40. 40.

    Panning, M. P. et al. Verifying single-station seismic approaches using Earth-based data: preparation for data return from the InSight mission to Mars. Icarus 248, 230–242 (2015).

  41. 41.

    Khan, A. M. et al. Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Phys. Earth Planet. Inter. 258, 28–42 (2016).

  42. 42.

    Daubar, I. et al. Impact-seismic investigations of the InSight mission. Space Sci. Rev. 214, 132 (2018).

  43. 43.

    Baratoux, D., Toplis, M. J., Monnereau, M. & Gasnault, O. Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature 472, 338–341 (2011).

  44. 44.

    Golombek, M. et al. Selection of the InSight landing site. Space Sci. Rev. 211, 5–95 (2017).

  45. 45.

    Smrekar, S. E. et al. Pre-mission InSights on the interior of Mars. Space Sci. Rev. 215, 3 (2019).

  46. 46.

    Tittmann, B. R., Clark, V. A., Richardson, J. M. & Spencer, T. W. Possible mechanism for seismic attenuation in rocks containing small amounts of volatiles. J. Geophys. Res. 85, 5199–5208 (1980).

  47. 47.

    Clinton, J. et al. The Marsquake Service: securing daily analysis of SEIS data and building the Martian seismicity catalogue for InSight. Space Sci. Rev. 214, 133 (2018).

  48. 48.

    Knapmeyer, M. TTBox: a MatLab toolbox for the computation of 1D teleseismic travel times. Seismol. Res. Lett. 75, 726–733 (2004).

  49. 49.

    Smith, D. E. et al. Mars Orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001).

  50. 50.

    Drilleau, M. et al. A Bayesian approach to infer radial models of temperature and anisotropy in the transition zone from surface wave dispersion curves. Geophys. J. Int. 195, 1165–1183 (2013).

  51. 51.

    Mosegaard, K. & Tarantola, A. Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res. 1001, 12431–12448 (1995).

  52. 52.

    Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1091 (1953).

  53. 53.

    Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970).

  54. 54.

    Sorrells, G. G., McDonald, J. A., Der, Z. A. & Herrin, E. Earth motion caused by local atmospheric pressure changes. Geophys. J. Int. 26, 83–98 (1971).

  55. 55.

    Kennett, B. L. N. The removal of free surface interactions from three-component seismograms. Geophys. J. Int. 104, 53–163 (1991).

  56. 56.

    Ligorria, J. P. & Ammon, C. J. Iterative deconvolution and receiver-function estimation. Bull. Seism. Soc. Am. 89, 1395–1400 (1999).

  57. 57.

    Tauzin, B., Phạm, T. S. & Tkalčić, H. Receiver functions from seismic interferometry: a practical guide. Geophys. J. Int. 217, 1–24 (2019).

  58. 58.

    Kind, R., Kosarev, G. L. & Petersen, N. V. Receiver functions at the stations of the German Regional Seismic Network (GRSN). Geophys. J. Int. 121, 191–202 (1995).

  59. 59.

    Hannemann, K., Krüger, F., Dahm, T. & Lange, D. Structure of the oceanic lithosphere and upper mantle north of the Gloria Fault in the eastern mid-Atlantic by receiver function analysis. J. Geophys. Res. 122, 7927–7950 (2017).

  60. 60.

    Wathelet, M. An improved Neighborhood Algorithm: parameter conditions and dynamic scaling. Geophys. Res. Lett. 35, L09301 (2008).

  61. 61.

    Shibutani, T., Sambridge, M. & Kennett, B. Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath eastern Australia. Geophys. Res. Lett. 23, 1829–1832 (1996).

  62. 62.

    Sambridge, M. Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophys. J. Int. 138, 479–494 (1999).

  63. 63.

    SEIS Raw Data: InSight Mission (InSight Mars SEIS Data Service, IPGP, JPL, CNES, ETHZ, ICL, MPS, ISAE-Supaero, LPG, MSFC, 2019);

  64. 64.

    Black Forest Observatory Data (GFZ Data Services, Black Forest Observatory, 1971);

  65. 65.

    Nakamura, Y. et al. Shallow moonquakes: Depth, distribution and implications as to the present state of the lunar interior. In Proc. Lunar Sci. Conf. 10th Vol. 3, 2299–2309 (Pergamon Press, 1979).

  66. 66.

    Pacific Northwest Seismic Network (International Federation of Digital Seismograph Networks, Univ. Washington, 1963).

Download references


We acknowledge NASA, CNES, their partner agencies and institutions (UKSA, SSO, DLR, JPL, IPGP-CNRS, ETHZ, IC, MPS-MPG) and the flight operations team at JPL, SISMOC, MSDS, IRIS-DMC and PDS for providing SEED SEIS data. The French team acknowledge the French Space Agency CNES, which has supported and funded all SEIS-related contracts and CNES employees, as well as CNRS and the French team universities for personal and infrastructure support. SEIS VBB testing and development have also been supported by SESAME (Ile de France, Université Paris Diderot, IPGP, CNES) in the frameworks Centre de simulation Martien I-07–603 and Pole Terre Planètes 11015893. Additional support was provided by ANR (ANR-14-CE36-0012-02, ANR-19-CE31-0008-08 for SEIS science support and ANR-11-EQPX-0040 for RESIF data access) and for the IPGP team by the UnivEarthS Labex program (ANR-10-LABX-0023) and IDEX Sorbonne Paris Cité (ANR-11-IDEX-0005-0). Regolith stratigraphy inversion used HPC resources of CINES under allocation A0050407341 attributed by GENCI (Grand Equipement National de Calcul Intensif). Research described in this paper was partially carried out by the InSight Project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Additional work was supported by NASA’s InSight Participating Scientist Program and LPI (LPI is operated by USRA under a cooperative agreement with the Science Mission Directorate of the NASA). The Swiss coauthors were jointly funded by (1) the Swiss National Science Foundation and French Agence Nationale de la Recherche (SNF-ANR project 15713, Seismology on Mars), (2) the Swiss State Secretariat for Education, Research and Innovation (SEFRI project MarsQuake Service—Preparatory Phase) and (3) ETH Research grant ETH-06 17-02. Additional support came from the Swiss National Supercomputing Centre (CSCS) under project s992. The Swiss contribution in implementation of the SEIS electronics was made possible through funding from the federal Swiss Space Office (SSO), the contractual and technical support of the ESA-PRODEX office. SEIS-SP development and delivery were funded by UKSA. The SEIS levelling system development and operation support at MPS was funded by the DLR German Space Agency. B.T. and L. Pan acknowledge funding from European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreements 793824 and 751164. This paper is InSight Contribution 101, LPI contribution 2249 and IPGP Contribution 4099.

Author information

P. Lognonné leads the SEIS experiment and the VBB sensors. He designed the higher-level requirements of the experiment together with D. Mimoun. He led the manuscript team effort, contributed to several Supplementary Discussions and integrated all contributions. W.B.B. leads the InSight mission and the US contribution to SEIS. W.T.P., D.G. and U.C. lead the SP, Ebox and LVL respectively. W.T.P. contributed to several Supplementary Discussions. D.B., J.M. and C.T.R. lead the APSS, TWINS and IFG instruments. E. Barrett contributes to the SEIS operation at JPL, together with C.Y. at CNES. M. Bierwirth for the LVL, S. Calcutt for the SP, D. Mance and P.Z. for the Ebox, K.H. for the tether-shielding and S. de R., T.N., O.R. and S. Tillier for the VBB contributed to the SEIS subsystems and the SEIS Mars deployment and commissioning. L.K., G.P., P. Laudet and A.S.-B. contributed to the SEIS overall management and SEIS Mars deployment and commissioning. J.C., M. Böse, C.C., S. Ceylan, M. van D., A.H., A.K., T.K., G.M., J.-R.S. and S. Stähler contribute to the MQS frontline activity, and D.G., W.B.B., P. Lognonné, D.B., R.F.G., D.G., S.K., M.P., W.T.P., S. Smrekar, A. Spiga and R.W. to the MQS review. E. Beucler, F.E., C.P. and S. Stähler contribute to the MQS and ERP operations. N.C. and C.J. contributed to the SEIS analysis and Mars deployment. C.B., E. Bozdag, I.D., M. Golombek, J.I., A.-C.P., R.L. and J.T. reviewed the manuscript. All authors read and commented on the manuscript. W.T.P. and P. Lognonné led the analysis of Supplementary Discussion 1. C.C., R.F.G., A. Stott, J.McC., C.P., S.B. and L. Pou analysed the data. D. Mimoun provided the environmental noise model. S. Ceylan provided the seismic event catalogue data. E.S. and M.S. provided the polarization analysis. L. Pou provided the VBB-POS output analysis. A. Spiga and D.B. provided the environmental data. P. Lognonné and S. Kedar led the analysis of Supplementary Discussion 2. L.F. developed the LVL inversion methodology with the support of P. Lognonné. P. Delage and P. Lognonné discussed the results and P. Delage provided additional laboratory experiment support. L.F. and M. van D. performed the resonances analysis. T.S. leads the HP3 experiment and contributed to the execution of the HP3-SEIS experiment and the interpretation of the results. D.S. and F.A. implemented in collaboration with C.S. and J.R. the aliased-data reconstruction algorithm developed by D.S., F.A. and J.R. N.B., J. ten P. and C.S. implemented the clock time processing in collaboration with D.S. N.B., C.S., D.S. and M. van D. processed and interpreted the travel-time data in collaboration with J.R. C.S. and M. van D. contributed to the writing of the main text section related to the subsurface, and N.B., D.S., C.S. and M. van D. in collaboration with J.R. and F.A. wrote Supplementary Discussion 2. A.H. contributed to the HP3-SEIS analysis. S. Krasner, J.K., C.K., L.R., J.V. and N.V. developed the timing tools between the lander, HP3 and SEIS. B.K. and N.M. developed the modelling and inversion tools for dust devils, processed the corresponding data and wrote Supplementary Discussion 2-3. C.P. and S.R. developed the automatic HiRise dust devil track software. M.D. developed the subsurface inversion tool with contributions from B.K. and P. Lognonné and wrote Supplementary Discussion 2-4. All authors discussed the overall results. N.T. and C.V. contributed to the discussion on regolith and duricrust properties. Supplementary Discussion 3 was written and led by L.M., T.K. and N.S. The scattering and attenuation scenarios for the sol 128 and sol 173 events were developed by T.K., P. Lognonné and L.M. R.F.G. provided deglitched waveforms. E.S., M.S. and E. Beucler analysed the polarization and incidence angle of the sol 173 event. Diffusion calculations were performed by W.T.P., N.S., L.M., P. Lognonné and M.P. Radiative transfer models were developed by L.M. M.C. and S.M. compiled the measurements and waveforms pertaining to Supplementary Fig. 3-12. The results were interpreted by P. Lognonné, T.K. and L.M. Reviews were provided by C.B., T.N.-M., A.-C.P. and R.W. B.K.-E., B.T. and M.P. coordinated the RF study in Supplementary Discussion 4. B.K.-E. (Method D), V.L. (Method A), B.T. (Method B), S. Tharimena (Method C) and A.K. and F.B. (Method E) calculated RFs using various methods, discussed the results, contributed to the interpretation, and drafted the manuscript. R.J. performed the inversion of S0173a data. B.K.-E. and B.T. calculated synthetic RFs. M.P. contributed to the interpretation and participated in discussions and writing. P. Davis, P. Lognonné, B.P., R.F.G. and J.-R.S. contributed deglitched waveforms for S0173a. S. Stähler provided the probability distribution of ray parameters for S0173a. M.K. produced the schematic diagrams in Fig. 6 and participated in discussions. The elastic property compilation was provided by C.P., L. Pan, D.A., A.J., C.M., M. Golombek, A.K., N.F. and C.Q.-N. C.B. and J.I. reviewed this supplementary material. J.-R.S. coordinated Supplementary Discussion 5 with P. Davis and R.W.-S. F.N. and P. Lognonné led the glitch-focused working group. P. Davis, P. Lognonné, L. Pou, B.P. and R.F.G. developed the glitch-removal algorithm based on the instrument transfer function. S.B., P. Lognonné and E.S. developed the glitch-removal algorithm based on the deep scattering tool. J.-R.S. developed the glitch-removal algorithm based on the discrete wavelet transform. All authors analysed the glitches, discussed the removal strategies and approved of the manuscript.

Correspondence to P. Lognonné.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Stefan Lachowycz.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions 1–5 and Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lognonné, P., Banerdt, W.B., Pike, W.T. et al. Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nat. Geosci. 13, 213–220 (2020).

Download citation

Further reading

  • Crustal and time-varying magnetic fields at the InSight landing site on Mars

    • Catherine L. Johnson
    • , Anna Mittelholz
    • , Benoit Langlais
    • , Christopher T. Russell
    • , Véronique Ansan
    • , Don Banfield
    • , Peter J. Chi
    • , Matthew O. Fillingim
    • , Francois Forget
    • , Heidi Fuqua Haviland
    • , Matthew Golombek
    • , Steve Joy
    • , Philippe Lognonné
    • , Xinping Liu
    • , Chloé Michaut
    • , Lu Pan
    • , Cathy Quantin-Nataf
    • , Aymeric Spiga
    • , Sabine Stanley
    • , Shea N. Thorne
    • , Mark A. Wieczorek
    • , Yanan Yu
    • , Suzanne E. Smrekar
    •  & William B. Banerdt

    Nature Geoscience (2020)

  • The seismicity of Mars

    • D. Giardini
    • , P. Lognonné
    • , W. B. Banerdt
    • , W. T. Pike
    • , U. Christensen
    • , S. Ceylan
    • , J. F. Clinton
    • , M. van Driel
    • , S. C. Stähler
    • , M. Böse
    • , R. F. Garcia
    • , A. Khan
    • , M. Panning
    • , C. Perrin
    • , D. Banfield
    • , E. Beucler
    • , C. Charalambous
    • , F. Euchner
    • , A. Horleston
    • , A. Jacob
    • , T. Kawamura
    • , S. Kedar
    • , G. Mainsant
    • , J.-R. Scholz
    • , S. E. Smrekar
    • , A. Spiga
    • , C. Agard
    • , D. Antonangeli
    • , S. Barkaoui
    • , E. Barrett
    • , P. Combes
    • , V. Conejero
    • , I. Daubar
    • , M. Drilleau
    • , C. Ferrier
    • , T. Gabsi
    • , T. Gudkova
    • , K. Hurst
    • , F. Karakostas
    • , S. King
    • , M. Knapmeyer
    • , B. Knapmeyer-Endrun
    • , R. Llorca-Cejudo
    • , A. Lucas
    • , L. Luno
    • , L. Margerin
    • , J. B. McClean
    • , D. Mimoun
    • , N. Murdoch
    • , F. Nimmo
    • , M. Nonon
    • , C. Pardo
    • , A. Rivoldini
    • , J. A. Rodriguez Manfredi
    • , H. Samuel
    • , M. Schimmel
    • , A. E. Stott
    • , E. Stutzmann
    • , N. Teanby
    • , T. Warren
    • , R. C. Weber
    • , M. Wieczorek
    •  & C. Yana

    Nature Geoscience (2020)

  • Initial results from the InSight mission on Mars

    • W. Bruce Banerdt
    • , Suzanne E. Smrekar
    • , Don Banfield
    • , Domenico Giardini
    • , Matthew Golombek
    • , Catherine L. Johnson
    • , Philippe Lognonné
    • , Aymeric Spiga
    • , Tilman Spohn
    • , Clément Perrin
    • , Simon C. Stähler
    • , Daniele Antonangeli
    • , Sami Asmar
    • , Caroline Beghein
    • , Neil Bowles
    • , Ebru Bozdag
    • , Peter Chi
    • , Ulrich Christensen
    • , John Clinton
    • , Gareth S. Collins
    • , Ingrid Daubar
    • , Véronique Dehant
    • , Mélanie Drilleau
    • , Matthew Fillingim
    • , William Folkner
    • , Raphaël F. Garcia
    • , Jim Garvin
    • , John Grant
    • , Matthias Grott
    • , Jerzy Grygorczuk
    • , Troy Hudson
    • , Jessica C. E. Irving
    • , Günter Kargl
    • , Taichi Kawamura
    • , Sharon Kedar
    • , Scott King
    • , Brigitte Knapmeyer-Endrun
    • , Martin Knapmeyer
    • , Mark Lemmon
    • , Ralph Lorenz
    • , Justin N. Maki
    • , Ludovic Margerin
    • , Scott M. McLennan
    • , Chloe Michaut
    • , David Mimoun
    • , Anna Mittelholz
    • , Antoine Mocquet
    • , Paul Morgan
    • , Nils T. Mueller
    • , Naomi Murdoch
    • , Seiichi Nagihara
    • , Claire Newman
    • , Francis Nimmo
    • , Mark Panning
    • , W. Thomas Pike
    • , Ana-Catalina Plesa
    • , Sébastien Rodriguez
    • , Jose Antonio Rodriguez-Manfredi
    • , Christopher T. Russell
    • , Nicholas Schmerr
    • , Matt Siegler
    • , Sabine Stanley
    • , Eléanore Stutzmann
    • , Nicholas Teanby
    • , Jeroen Tromp
    • , Martin van Driel
    • , Nicholas Warner
    • , Renee Weber
    •  & Mark Wieczorek

    Nature Geoscience (2020)

  • The atmosphere of Mars as observed by InSight

    • Don Banfield
    • , Aymeric Spiga
    • , Claire Newman
    • , François Forget
    • , Mark Lemmon
    • , Ralph Lorenz
    • , Naomi Murdoch
    • , Daniel Viudez-Moreiras
    • , Jorge Pla-Garcia
    • , Raphaël F. Garcia
    • , Philippe Lognonné
    • , Özgür Karatekin
    • , Clément Perrin
    • , Léo Martire
    • , Nicholas Teanby
    • , Bart Van Hove
    • , Justin N. Maki
    • , Balthasar Kenda
    • , Nils T. Mueller
    • , Sébastien Rodriguez
    • , Taichi Kawamura
    • , John B. McClean
    • , Alexander E. Stott
    • , Constantinos Charalambous
    • , Ehouarn Millour
    • , Catherine L. Johnson
    • , Anna Mittelholz
    • , Anni Määttänen
    • , Stephen R. Lewis
    • , John Clinton
    • , Simon C. Stähler
    • , Savas Ceylan
    • , Domenico Giardini
    • , Tristram Warren
    • , William T. Pike
    • , Ingrid Daubar
    • , Matthew Golombek
    • , Lucie Rolland
    • , Rudolf Widmer-Schnidrig
    • , David Mimoun
    • , Éric Beucler
    • , Alice Jacob
    • , Antoine Lucas
    • , Mariah Baker
    • , Véronique Ansan
    • , Kenneth Hurst
    • , Luis Mora-Sotomayor
    • , Sara Navarro
    • , Josefina Torres
    • , Alain Lepinette
    • , Antonio Molina
    • , Mercedes Marin-Jimenez
    • , Javier Gomez-Elvira
    • , Veronica Peinado
    • , Jose-Antonio Rodriguez-Manfredi
    • , Brian T. Carcich
    • , Stephen Sackett
    • , Christopher T. Russell
    • , Tilman Spohn
    • , Suzanne E. Smrekar
    •  & W. Bruce Banerdt

    Nature Geoscience (2020)