Continuum of earthquake rupture speeds enabled by oblique slip

Abstract

Earthquake rupture speed can affect ground shaking and therefore seismic hazard. Seismological observations show that large earthquakes span a continuum of rupture speeds, from slower than Rayleigh waves up to P-wave speed, and include speeds that are predicted to be unstable by two-dimensional theory. This discrepancy between observations and theory has not yet been reconciled by a quantitative model. Here we present numerical simulations that show that long ruptures with oblique slip (both strike-slip and dip-slip components) can propagate steadily at various speeds, including those previously suggested to be unstable. The obliqueness of slip and the ratio of fracture energy to static energy release rate primarily control the propagation speed of long ruptures. We find that the effects of these controls on rupture speed can be predicted by extending the three-dimensional theory of fracture mechanics to long ruptures with oblique slip. This model advances our ability to interpret supershear earthquakes, to constrain the energy ratio of faults based on observed rupture speed and rake angle, and to relate the potential rupture speed and size of future earthquakes to the observed slip deficit along faults.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Earthquake rupture propagation on a long fault with oblique slip.
Fig. 2: Rupture propagation controlled by energy ratio and rake angle.
Fig. 3: Comparison between observed and simulated speeds and synopsis of rupture behaviours.
Fig. 4: Conceptual implications for time-dependent seismic hazard assessment.

Data availability

The numerical data used for the figures in the main body and in the Extended Data are presented in the Source data. The theoretical data are presented in the Methods. Other data are previously published and available in the references explained in the figure captions. Source data are provided with this paper.

Code availability

The open-source software SPECFEM3D used in our 3D dynamic rupture simulations is available from the Computational Infrastructure for Geodynamics at https://geodynamics.org/cig/software/specfem3d/.

References

  1. 1.

    Scala, A., Festa, G. & Del Gaudio, S. Relation between near-fault ground motion impulsive signals and source parameters. J. Geophys. Res. Solid Earth 123, 7707–7721 (2018).

    Article  Google Scholar 

  2. 2.

    Gabriel, A. A., Ampuero, J. P., Dalguer, L. A. & Mai, P. M. Source properties of dynamic rupture pulses with off-fault plasticity. J. Geophys. Res. Solid Earth 118, 4117–4126 (2013).

    Article  Google Scholar 

  3. 3.

    Dunham, E. M. & Bhat, H. S. Attenuation of radiated ground motion and stresses from three-dimensional supershear ruptures. J. Geophys. Res. Solid Earth 113, B08319 (2008).

    Article  Google Scholar 

  4. 4.

    Andrews, D. J. Ground motion hazard from supershear rupture. Tectonophysics 493, 216–221 (2010).

    Article  Google Scholar 

  5. 5.

    Bizzarri, A., Dunham, E. M. & Spudich, P. Coherence of mach fronts during heterogeneous supershear earthquake rupture propagation: simulations and comparison with observations. J. Geophys. Res. Solid Earth 115, B08301 (2010).

    Google Scholar 

  6. 6.

    Vyas, J. C., Mai, P. M., Galis, M., Dunham, E. M. & Imperatori, W. Mach wave properties in the presence of source and medium heterogeneity. Geophys. J. Int. 214, 2035–2052 (2018).

    Article  Google Scholar 

  7. 7.

    Chounet, A., Vallée, M., Causse, M. & Courboulex, F. Global catalog of earthquake rupture velocities shows anticorrelation between stress drop and rupture velocity. Tectonophysics 733, 148–158 (2018).

    Article  Google Scholar 

  8. 8.

    Bao, H. et al. Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nat. Geosci. 12, 200–205 (2019).

    Article  Google Scholar 

  9. 9.

    Zhan, Z., Helmberger, D. V., Kanamori, H. & Shearer, P. M. Supershear rupture in a Mw 6.7 aftershock of the 2013 Sea of Okhotsk earthquake. Science 345, 204–207 (2014).

    Article  Google Scholar 

  10. 10.

    Bouchon, M. et al. How fast is rupture during an earthquake? New insights from the 1999 Turkey earthquakes. Geophys. Res. Lett. 28, 2723–2726 (2001).

    Article  Google Scholar 

  11. 11.

    Bouchon, M. & Vallée, M. Observation of long supershear rupture during the magnitude 8.1 Kunlunshan earthquake. Science 301, 824–826 (2003).

    Article  Google Scholar 

  12. 12.

    Yue, H. et al. Supershear rupture of the 5 January 2013 Craig, Alaska (Mw 7.5) earthquake. J. Geophys. Res. 118, 5903–5919 (2013).

    Article  Google Scholar 

  13. 13.

    Hicks, S. P. et al. Back-propagating supershear rupture in the 2016 Mw 7.1 Romanche transform fault earthquake. Nat. Geosci. 13, 647–653 (2020).

    Article  Google Scholar 

  14. 14.

    Wang, D. & Mori, J. Short-period energy of the 25 April 2015 Mw 7.8 Nepal earthquake determined from backprojection using four arrays in Europe, China, Japan, and Australia. Bull. Seismol. Soc. Am. 106, 259–266 (2016).

    Article  Google Scholar 

  15. 15.

    Burridge, R. Admissible speeds for plane-strain self-similar shear cracks with friction but lacking cohesion. Geophys. J. Int. 35, 439–455 (1973).

    Article  Google Scholar 

  16. 16.

    Mai, P. M. & Thingbaijam, K. K. S. SRCMOD: an online database of finite-fault rupture models. Seismol. Res. Lett. 85, 1348–1357 (2014).

    Article  Google Scholar 

  17. 17.

    Song, X. et al. Geodetic observations of the 2018 Mw 7.5 Sulawesi earthquake and its implications for the kinematics of the Palu Fault. Geophys. Res. Lett. 46, 4212–4220 (2019).

    Article  Google Scholar 

  18. 18.

    Weng, H. & Ampuero, J. P. The dynamics of elongated earthquake ruptures. J. Geophys. Res. Solid Earth 124, 8584–8610 (2019).

    Article  Google Scholar 

  19. 19.

    Andrews, D. J. Dynamic growth of mixed-mode shear cracks. Bull. Seismol. Soc. Am. 84, 1184–1198 (1994).

    Google Scholar 

  20. 20.

    Bizzarri, A. & Das, S. Mechanics of 3-D shear cracks between Rayleigh and shear wave rupture speeds. Earth Planet. Sci. Lett. 357, 397–404 (2012).

    Article  Google Scholar 

  21. 21.

    Ampuero, J. P. & Mao, X. in Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture (eds Thomas, M. Y. et al.) Ch. 13 (AGU, 2017).

  22. 22.

    Freund, L. B. Dynamic Fracture Mechanics (Cambridge Univ. Press, 1998).

  23. 23.

    Irwin, G. R. Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957).

    Google Scholar 

  24. 24.

    Fang, J. et al. The 2018 Mw 7.5 Palu earthquake: a supershear rupture event constrained by InSAR and broadband regional seismograms. Remote Sens. 11, 1330 (2019).

    Article  Google Scholar 

  25. 25.

    Oral, E., Weng, H. & Ampuero, J. P. Does a damaged-fault zone mitigate the near-field impact of supershear earthquakes? Application to the 2018 Mw 7.5 Palu, Indonesia earthquake. Geophys. Res. Lett. 47, e2019GL085649 (2020).

    Article  Google Scholar 

  26. 26.

    Mai, P. M. et al. in Earthquakes: Radiated Energy and the Physics of Faulting (eds Abercrombie, R. et al.) 283–293 (AGU, 2006).

  27. 27.

    Weng, H. & Yang, H. Constraining frictional properties on fault by dynamic rupture simulations and near-field observations. J. Geophys. Res. Solid Earth 123, 6658–6670 (2018).

    Google Scholar 

  28. 28.

    Gallovic, F., Valentova, L., Ampuero, J. P. & Gabriel, A. A. Bayesian dynamic finite-fault inversion: 1. method and synthetic test. J. Geophys. Res. Solid Earth 124, 6949–6969 (2019).

    Article  Google Scholar 

  29. 29.

    Nielsen, S. et al. G: fracture energy, friction and dissipation in earthquakes. J. Seismol. 20, 1187–1205 (2016).

    Article  Google Scholar 

  30. 30.

    Viesca, R. C. & Garagash, D. I. Ubiquitous weakening of faults due to thermal pressurization. Nat. Geosci. 8, 875–879 (2015).

    Article  Google Scholar 

  31. 31.

    Tinti, E., Cocco, M., Fukuyama, E. & Piatanesi, A. Dependence of slip weakening distance (Dc) on final slip during dynamic rupture of earthquakes. Geophys. J. Int. 177, 1205–1220 (2009).

    Article  Google Scholar 

  32. 32.

    Andrews, D. J. Rupture dynamics with energy loss outside the slip zone. J. Geophys. Res. Solid Earth 110, B01307 (2005).

    Article  Google Scholar 

  33. 33.

    Moreno, M. et al. Heterogeneous plate locking in the South-Central Chile subduction zone: building up the next great earthquake. Earth Planet. Sci. Lett. 305, 413–424 (2011).

    Article  Google Scholar 

  34. 34.

    Jolivet, R., Simons, M., Agram, P. S., Duputel, Z. & Shen, Z.-K. Aseismic slip and seismogenic coupling along the central San Andreas Fault. Geophys. Res. Lett. 42, 297–306 (2015).

    Article  Google Scholar 

  35. 35.

    Villegas-Lanza, J. C. et al. Active tectonics of Peru: heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian sliver, and Subandean shortening accommodation. J. Geophys. Res. Solid Earth 121, 7371–7394 (2016).

    Article  Google Scholar 

  36. 36.

    Pondard, N., Armijo, R., King, G. C. P., Meyer, B. & Flerit, F. Fault interactions in the Sea of Marmara pull-apart (North Anatolian Fault): earthquake clustering and propagating earthquake sequences. Geophys. J. Int. 171, 1185–1197 (2007).

    Article  Google Scholar 

  37. 37.

    Lin, A. et al. Co-seismic strike-slip and rupture length produced by the 2001 Ms 8.1 Central Kunlun earthquake. Science 296, 2015–2017 (2002).

    Article  Google Scholar 

  38. 38.

    Perrin, C., Manighetti, I., Ampuero, J. P., Cappa, F. & Gaudemer, Y. Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth. J. Geophys. Res. Solid Earth 121, 3666–3685 (2016).

    Article  Google Scholar 

  39. 39.

    Weng, H., Yang, H., Zhang, Z. & Chen, X. Earthquake rupture extents and coseismic slips promoted by damaged fault zones. J. Geophys. Res. Solid Earth 121, 4446–4457 (2016).

    Article  Google Scholar 

  40. 40.

    Roux, S., Vandembroucq, D. & Hild, F. Effective toughness of heterogeneous brittle materials. Eur. J. Mech. A 22, 743–749 (2003).

    Article  Google Scholar 

  41. 41.

    Vandembroucq, D. & Roux, S. Mode III stress intensity factor ahead of a rough crack. J. Mech. Phys. Solids 45, 853–872 (1997).

    Article  Google Scholar 

  42. 42.

    Ulrich, T., Gabriel, A. A., Ampuero, j. P. & Xu, W. Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults. Nat. Commun. 10, 1213 (2019).

    Article  Google Scholar 

  43. 43.

    Bai, K. & Ampuero, J. P. Effect of seismogenic depth and background stress on physical limits of earthquake rupture across fault step overs. J. Geophys. Res. Solid Earth 122, 10280–10298 (2017).

    Article  Google Scholar 

  44. 44.

    Dziewonski, A. M. & Anderson, D. L. Preliminary reference earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  Google Scholar 

  45. 45.

    Weng, H. & Yang, H. Seismogenic width controls aspect ratios of earthquake ruptures. Geophys. Res. Lett. 44, 2725–2732 (2017).

    Article  Google Scholar 

  46. 46.

    Day, S. M., Dalguer, L. A., Lapusta, N. & Liu, Y. Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture. J. Geophys. Res. Solid Earth 110, B12307 (2005).

    Article  Google Scholar 

  47. 47.

    Ampuero, J. P. Etude physique et numérique de la nucléation des séismes. PhD thesis, Univ. Paris VII (2002).

  48. 48.

    Komatitsch, D. & Vilotte, J.-P. The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 88, 368–392 (1998).

    Google Scholar 

  49. 49.

    Galvez, P., Ampuero, J. P., Dalguer, L. A., Somala, S. N. & Nissen-Meyer, T. Dynamic earthquake rupture modelled with an unstructured 3-D spectral element method applied to the 2011 M9 Tohoku earthquake. Geophys. J. Int. 198, 1222–1240 (2014).

    Article  Google Scholar 

  50. 50.

    Kaneko, Y., Lapusta, N. & Ampuero, J. P. Spectral element modeling of spontaneous earthquake rupture on rate and state faults: effect of velocity-strengthening friction at shallow depths. J. Geophys. Res. Solid Earth 113, B09317 (2008).

    Google Scholar 

  51. 51.

    Broberg, K. B. Intersonic bilateral slip. Geophys. J. Int. 119, 706–714 (1994).

    Article  Google Scholar 

  52. 52.

    Tada, H., Paris, P. C. & Irwin, G. R. The Stress Analysis of Cracks Handbook Vol. 130 (American Society of Mechanical Engineers Press, 2000).

  53. 53.

    Freund, L. B. & Clifton, R. J. On the uniqueness of plane elastodynamic solutions for running cracks. J. Elast. 4, 293–299 (1974).

    Article  Google Scholar 

  54. 54.

    Kanamori, H. & Rivera, L. in Earthquakes: Radiated Energy and the Physics of Faulting (eds Abercrombie, R. et al.) 3–13 (AGU, 2006).

  55. 55.

    Starr, A. T. Slip in a crystal and rupture in a solid due to shear. Math. Proc. Camb. Phil. Soc. 24, 489–500 (1928).

    Article  Google Scholar 

  56. 56.

    Knopoff, L. Energy release in earthquakes. Geophys. J. Int. 1, 44–52 (1958).

    Article  Google Scholar 

  57. 57.

    Haskell, N. A. Total energy and energy spectral density of elastic wave radiation from propagating faults. Bull. Seismol. Soc. Am. 54, 1811–1841 (1964).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the French government through the Investments in the Future project UCAJEDI (ANR-15-IDEX-01) managed by the French National Research Agency (ANR). We thank D. Molina for providing the central Andes coupling model in digital form.

Author information

Affiliations

Authors

Contributions

H.W. designed and carried out the numerical experiments, and analysed the numerical results. H.W. and J.-P.A. developed the theoretical model, interpreted the results, and wrote the paper.

Corresponding author

Correspondence to Huihui Weng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary handling editor: Stefan Lachowycz.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Horizontal rupture speed controlled by energy ratio and rake angle.

a, Normalized depth-averaged horizontal speed \({{\rm{v}}}_{{\rm{r}}}^{{\rm{hor}}}\) as a function of normalized rupture propagation distance L/W from the 3D dynamic rupture simulations with Gc/G0 = 0.63 and various rake angles (indicated by colors). b, Dependencies of normalized depth-averaged horizontal speed on energy ratio and rake angle. Source data

Extended Data Fig. 2 Rupture speed across depth.

a, Definitions of real speed (left) and apparent horizontal speed (right). b, Shape (left), real speed (middle) and horizontal speed (right) of steady rupture fronts as a function of depth. Colors indicate rake angle. Source data

Extended Data Fig. 3 Rupture properties of a kinematic rupture model with oblique slip.

a, Rupture contours of the kinematic model, extending as an elliptical front propagating at the P wave speed along its major axis and at the S wave speed along its minor axis. The rake angle is the angle between the major axis of the ellipse and the strike direction. Comparison between the kinematic and dynamic models with Gc/G0 = 0.63 of (b) depth-averaged real speed, (c) horizontal speed and (d) depth-averaged real speed angle as a function of rake angle. Source data

Extended Data Fig. 4 Sketches of friction laws.

Sketches of fracture energy Gc and static energy release rate G0 for (a) linear and (b) power-law slip-weakening friction laws.

Extended Data Fig. 5 Effects of nucleation speed on rupture evolution.

Normalized depth-averaged rupture speeds as a function of normalized distance L/W for two 3D dynamic rupture simulations with different nucleation speeds (vnuc). Source data

Source data

Source Data Fig. 2

Numerical simulation data: rupture behaviours, real rupture speed, steady rupture speed and real speed angle.

Source Data Extended Data Fig. 1

Numerical simulation data: horizontal rupture speed.

Source Data Extended Data Fig. 2

Numerical simulation data: shape, real speed and horizontal speed of steady rupture fronts.

Source Data Extended Data Fig. 3

Numerical simulation data: kinematic models.

Source Data Extended Data Fig. 5

Numerical simulation data: rupture speeds for different nucleation speeds.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weng, H., Ampuero, JP. Continuum of earthquake rupture speeds enabled by oblique slip. Nat. Geosci. (2020). https://doi.org/10.1038/s41561-020-00654-4

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing