Moist heat stress extremes in India enhanced by irrigation

Abstract

Intensive irrigation in India has been demonstrated to decrease surface temperature, but the influence of irrigation on humidity and extreme moist heat stress is not well understood. Here we analysed a combination of in situ and satellite-based datasets and conducted meteorological model simulations to show that irrigation modulates extreme moist heat. We found that intensive irrigation in the region cools the land surface by 1 °C and the air by 0.5 °C. However, the decreased sensible heat flux due to irrigation reduces the planetary boundary layer height, which increases low-level moist enthalpy. Thus, irrigation increases the specific and relative humidity, which raises the moist heat stress metrics. Intense irrigation over the region results in increased moist heat stress in India, Pakistan, and parts of Afghanistan—affecting about 37–46 million people in South Asia—despite a cooler land surface. We suggest that heat stress projections in India and other regions dominated by semi-arid and monsoon climates that do not include the role of irrigation overestimate the benefits of irrigation on dry heat stress and underestimate the risks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Irrigation driven cooling in the Indo-Gangetic Plain.
Fig. 2: Changes in three-day maximum heat indicators in India during the summer (April–May) for the 1979–2018 period.
Fig. 3: The role of irrigation on summer heat fluxes, temperature, humidity, SLP and PBL height.
Fig. 4: Influence of irrigation on dry and moist heat stress in India.

Data availability

All datasets are available in the manuscript or the Supplementary Information, and on the Zenodo database https://zenodo.org/record/3999048#.X0Sdni1h2so. Temperature observations from the India Meteorological Department are available from http://imdpune.gov.in/ndc_new/Request.html. The ERA5 reanalysis dataset is available from https://go.nature.com/2FB53G8. Source data are provided with this paper.

Code availability

All the codes used in this study will be provided by the corresponding author upon reasonable request.

References

  1. 1.

    Im, E. S., Pal, J. S. & Eltahir, E. A. B. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 3, e1603322 (2017).

    Google Scholar 

  2. 2.

    Mazdiyasni, O. et al. Increasing probability of mortality during Indian heat waves. Sci. Adv. 3, 1–6 (2017).

    Google Scholar 

  3. 3.

    Mishra, V., Mukherjee, S., Kumar, R. & Stone, D. A. Heat wave exposure in India in current, 1.5 °C, and 2.0 °C worlds. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aa9388 (2017).

  4. 4.

    Coffel, E. D., Horton, R. M. & de Sherbinin, A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett. 13, 014001 (2017).

    Google Scholar 

  5. 5.

    King, A. D. et al. Emergence of heat extremes attributable to anthropogenic influences. Geophys. Res. Lett. 43, 3438–3443 (2016).

    Google Scholar 

  6. 6.

    Knutson, T. R. & Ploshay, J. J. Detection of anthropogenic influence on a summertime heat stress index. Clim. Change 138, 25–39 (2016).

    Google Scholar 

  7. 7.

    Matthews, T. K. R., Wilby, R. L. & Murphy, C. Communicating the deadly consequences of global warming for human heat stress. Proc. Natl Acad. Sci. USA 114, 3861–3866 (2017).

    Google Scholar 

  8. 8.

    Kjellstrom, T. et al. Heat, human performance, and occupational health: a key issue for the assessment of global climate change impacts. Annu. Rev. Public Health 37, 97–112 (2016).

    Google Scholar 

  9. 9.

    Sherwood, S. C. How important is humidity in heat stress? J. Geophys. Res. Atmos. 123, 11808–11810 (2018).

    Google Scholar 

  10. 10.

    Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).

    Google Scholar 

  11. 11.

    Buzan, J. R., Oleson, K. & Huber, M. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev. 8, 151–170 (2015).

    Google Scholar 

  12. 12.

    Kang, S. & Eltahir, E. A. B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 9, 2894 (2018).

    Google Scholar 

  13. 13.

    Shankar, P. V., Kulkarni, H. & Krishnan, S. India’s groundwater challenge and the way forward. Econ. Political Wkly 46, 37–45 (2011).

    Google Scholar 

  14. 14.

    Amarasinghe, U. A., Shah, T. & Anand, B. K. India’s water supply and demand from 2025-2050: business-as-usual scenario and issues. In Proc. Workshop on Analyses of Hydrological, Social and Ecological Issues of the National River Linking Project (eds Amarasinghe, U. A. & Sharma, B. R.) 23–61 (IWMI, 2007).

  15. 15.

    Ambika, A. K., Wardlow, B. & Mishra, V. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015. Sci. Data 3, 160118 (2016).

    Google Scholar 

  16. 16.

    Cook, B. I., Puma, M. J. & Krakauer, N. Y. Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing. Clim. Dyn. 37, 1587–1600 (2011).

    Google Scholar 

  17. 17.

    Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122, 1403–1422 (2017).

    Google Scholar 

  18. 18.

    Boucher, O., Myhre, G. & Myhre, A. Direct human influence of irrigation on atmospheric water vapour and climate. Clim. Dyn. 22, 597–603 (2004).

    Google Scholar 

  19. 19.

    Lobell, D. et al. Regional differences in the influence of irrigation on climate. J. Clim. 22, 2248–2255 (2009).

    Google Scholar 

  20. 20.

    Kumar, R. et al. Dominant control of agriculture and irrigation on urban heat island in India. Sci. Rep. 7, 14054 (2017).

    Google Scholar 

  21. 21.

    Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2015).

    Google Scholar 

  22. 22.

    Asoka, A., Gleeson, T., Wada, Y. & Mishra, V. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci. 10, 109–117 (2017).

    Google Scholar 

  23. 23.

    Azhar, G. S. et al. Heat-related mortality in India: excess all-cause mortality associated with the 2010 Ahmedabad heat wave. PLoS ONE 9, e91831 (2014).

    Google Scholar 

  24. 24.

    Marcella, M. P. & Eltahir, E. A. B. Introducing an irrigation scheme to a regional climate model: a case study over West Africa. J. Clim. 27, 5708–5723 (2014).

    Google Scholar 

  25. 25.

    Puma, M. J. & Cook, B. I. Effects of irrigation on global climate during the 20th century. J. Geophys. Res. Atmos. 115, D16120 (2010).

    Google Scholar 

  26. 26.

    Willett, K. M. & Sherwood, S. Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. Int. J. Climatol. https://doi.org/10.1002/joc.2257 (2012).

  27. 27.

    Sherwood, S. C. & Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl Acad. Sci. USA 107, 9552–9555 (2010).

    Google Scholar 

  28. 28.

    Byrne, M. P. & O’Gorman, P. A. Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl Acad. Sci. USA 115, 4863–4868 (2018).

    Google Scholar 

  29. 29.

    Willett, K. M., Gillett, N. P., Jones, P. D. & Thorne, P. W. Attribution of observed surface humidity changes to human influence. Nature 449, 710–712 (2007).

    Google Scholar 

  30. 30.

    Bollasina, M. & Nigam, S. The summertime ‘heat’ low over Pakistan/northwestern India: evolution and origin. Clim. Dyn. 37, 957–970 (2011).

    Google Scholar 

  31. 31.

    Gentine, P., Holtslag, A. A. M., D’Andrea, F. & Ek, M. Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeorol. 14, 1443–1462 (2013).

    Google Scholar 

  32. 32.

    Kang, S. & Eltahir, E. A. B. Impact of irrigation on regional climate over eastern China. Geophys. Res. Lett. 46, 5499–5505 (2019).

    Google Scholar 

  33. 33.

    Kueppers, L. M., Snyder, M. A. & Sloan, L. C. Irrigation cooling effect: regional climate forcing by land-use change. Geophys. Res. Lett. 34, L03703 (2007).

    Google Scholar 

  34. 34.

    Alter, R. E., Im, E. S. & Eltahir, E. A. B. Rainfall consistently enhanced around the Gezira Scheme in East Africa due to irrigation. Nat. Geosci. 8, 763–767 (2015).

    Google Scholar 

  35. 35.

    Im, E. S. & Kang, S. & Eltahir, E. A. B. Projections of rising heat stress over the western Maritime Continent from dynamically downscaled climate simulations. Glob. Planet. Change https://doi.org/10.1016/j.gloplacha.2018.02.01 (2018).

  36. 36.

    Sacks, W. J., Cook, B. I., Buenning, N., Levis, S. & Helkowski, J. H. Effects of global irrigation on the near-surface climate. Clim. Dyn. 33, 159–175 (2009).

    Google Scholar 

  37. 37.

    Dileepkumar, R., Achutarao, K. & Arulalan, T. Human influence on sub-regional surface air temperature change over India. Sci. Rep. 8, 8967 (2018).

    Google Scholar 

  38. 38.

    Seneviratne, S. I. et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).

    Google Scholar 

  39. 39.

    Sharma, A. et al. Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model. Environ. Res. Lett. 11, 064004 (2016).

    Google Scholar 

  40. 40.

    Georgescu, M., Moustaoui, M., Mahalov, A. & Dudhia, J. An alternative explanation of the semiarid urban area ‘oasis effect’. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD016720 (2011).

  41. 41.

    Zipper, S. C., Schatz, J., Kucharik, C. J. & Loheide, S. P. Urban heat island-induced increases in evapotranspirative demand. Geophys. Res. Lett. https://doi.org/10.1002/2016GL072190 (2017).

  42. 42.

    Siebert, S., Henrich, V., Frenken, K. & Burke, J. Update of the Digital Global Map of Irrigation Areas to Version 5 (FAO, 2013); https://doi.org/10.13140/2.1.2660.6728

  43. 43.

    Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).

    Google Scholar 

  44. 44.

    Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Google Scholar 

  45. 45.

    Srivastava, A. K., Rajeevan, M. & Kshirsagar, S. R. Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmos. Sci. Lett. 10, 249–254.

  46. 46.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Google Scholar 

  47. 47.

    Haldane, J. S. The influence of high air temperatures No. I. J. Hyg. (Lond.) 5, 494–513 (1905).

    Google Scholar 

  48. 48.

    Davies-Jones, R. An efficient and accurate method for computing the wet-bulb temperature along pseudoadiabats. Mon. Weather Rev. 136, 2764–2785 (2008).

    Google Scholar 

  49. 49.

    Steadman, R. G. The assessment of sultriness. Part I. A temperature–humidity index based on human physiology and clothing science. J. Appl. Meteorol. 18, 861–873 (1979).

    Google Scholar 

  50. 50.

    Brooke Anderson, G., Bell, M. L. & Peng, R. D. Methods to calculate the heat index as an exposure metric in environmental health research. Environ. Health Perspect. 121, 1111–1119 (2013).

    Google Scholar 

  51. 51.

    Skamarock, C. et al. A Description of the Advanced Research WRF Model Version 4 (NCAR, 2019); https://doi.org/10.5065/1DFH-6P97

  52. 52.

    Mitchell, K. et al. Noah Land Surface Model (LSM) User’s Guide (NCAR, 2005).

  53. 53.

    Iacono, M. J. Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. https://doi.org/10.1029/2008JD009944 (2008).

  54. 54.

    Janzic, Z. I. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 122, 927–945 (1994).

    Google Scholar 

  55. 55.

    Kain, J. S. & Kain, J. The Kain–Fritsch convective parameterization: an update. J. Appl. Meteorol. 43, 170–181 (2004).

    Google Scholar 

  56. 56.

    Qian, Y., Huang, M., Yang, B. & Berg, L. K. A modeling study of irrigation effects on surface fluxes and land–air–cloud interactions in the Southern Great Plains. J. Hydrometeorol. 14, 700–721 (2013).

    Google Scholar 

  57. 57.

    Siebert, S. et al. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 9, 535–547 (2005).

    Google Scholar 

  58. 58.

    Rienecker, M. M. et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24, 3624–3648 (2011).

    Google Scholar 

  59. 59.

    Durre, I. & Yin, X. Enhanced radiosonde data for studies of vertical structure. Bull. Am. Meteorol. Soc. 89, 1257–1262 (2008).

    Google Scholar 

  60. 60.

    Seidel, D. J., Ao, C. O. & Li, K. Estimating climatological planetary boundary layer heights from radiosonde observations: comparison of methods and uncertainty analysis. J. Geophys. Res. Atmos. 115, D16113 (2010).

    Google Scholar 

  61. 61.

    Basha, G. & Ratnam, M. V. Identification of atmospheric boundary layer height over a tropical station using high-resolution radiosonde refractivity profiles: comparison with GPS radio occupation measurements. J. Geophys. Res. Atmos. 114, D161010 (2009).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the data availability from the IMD ERA5, and MERRA reanalysis. The work was funded by the National Water Mission, Ministry of Environment, Forest, and Climate Change (MoEFCC) and the Ministry of Earth Sciences.

Author information

Affiliations

Authors

Contributions

V.M. conceived and designed the study and discussed it with M.H. A.K.A. conducted the WRF simulations. V.M., A.K.A., A.A., R.K. and S.A. performed the analysis. V.M. wrote the first draft and all the authors contributed to the discussion.

Corresponding author

Correspondence to Vimal Mishra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary handling editor: Tamara Goldin.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6 and Figs. 1–16.

Source data

Source Data Fig. 1

Data for all the panels of Fig. 1.

Source Data Fig. 2

Data for all the panels of Fig. 2.

Source Data Fig. 3

Data for all the panels of Fig. 3.

Source Data Fig. 4

Data for all the panels of Fig. 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishra, V., Ambika, A.K., Asoka, A. et al. Moist heat stress extremes in India enhanced by irrigation. Nat. Geosci. 13, 722–728 (2020). https://doi.org/10.1038/s41561-020-00650-8

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing