Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global patterns of terrestrial nitrogen and phosphorus limitation

Abstract

Nitrogen (N) and phosphorus (P) limitation constrains the magnitude of terrestrial carbon uptake in response to elevated carbon dioxide and climate change. However, global maps of nutrient limitation are still lacking. Here we examined global N and P limitation using the ratio of site-averaged leaf N and P resorption efficiencies of the dominant species across 171 sites. We evaluated our predictions using a global database of N- and P-limitation experiments based on nutrient additions at 106 and 53 sites, respectively. Globally, we found a shift from relative P to N limitation for both higher latitudes and precipitation seasonality and lower mean annual temperature, temperature seasonality, mean annual precipitation and soil clay fraction. Excluding cropland, urban and glacial areas, we estimate that 18% of the natural terrestrial land area is significantly limited by N, whereas 43% is relatively P limited. The remaining 39% of the natural terrestrial land area could be co-limited by N and P or weakly limited by either nutrient alone. This work provides both a new framework for testing nutrient limitation and a benchmark of N and P limitation for models to constrain predictions of the terrestrial carbon sink.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatial distributions in the PRENP database.
Fig. 2: Potential predictors.
Fig. 3: Global mapping of N and P limitation.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in figshare (https://doi.org/10.6084/m9.figshare.10735652.v1).

Code availability

The code used in this work can be accessed by contacting the corresponding authors.

References

  1. Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).

    Article  Google Scholar 

  2. LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    Article  Google Scholar 

  3. Yuan, Z. Y. & Chen, H. Y. A global analysis of fine root production as affected by soil nitrogen and phosphorus. Proc. R. Soc. B 279, 3796–3802 (2012).

    Article  Google Scholar 

  4. Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).

    Article  Google Scholar 

  5. Walker, T. W. & Syers, J. K. Fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).

    Article  Google Scholar 

  6. Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).

    Article  Google Scholar 

  7. Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).

    Article  Google Scholar 

  8. Houlton, B. Z., Wang, Y. P., Vitousek, P. M. & Field, C. B. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327–330 (2008).

    Article  Google Scholar 

  9. Menge, D. N. L. et al. Why are nitrogen-fixing trees rare at higher compared to lower latitudes? Ecology 98, 3127–3140 (2017).

    Article  Google Scholar 

  10. Deng, M. et al. Ecosystem scale trade-off in nitrogen acquisition pathways. Nat. Ecol. Evol. 2, 1724–1734 (2018).

    Article  Google Scholar 

  11. Pellegrini, A. F. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).

    Article  Google Scholar 

  12. Butler, O. M., Elser, J. J., Lewis, T., Mackey, B. & Chen, C. The phosphorus‐rich signature of fire in the soil–plant system: a global meta-analysis. Ecol. Lett. 21, 335–344 (2018).

    Article  Google Scholar 

  13. Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).

    Article  Google Scholar 

  14. Du, E. et al. Imbalanced phosphorus and nitrogen deposition in China’s forests. Atmos. Chem. Phys. 16, 8571–8579 (2016).

    Article  Google Scholar 

  15. Pardo, L. H. et al. Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry 80, 143–171 (2006).

    Article  Google Scholar 

  16. Tian, D., Wang, H., Sun, J. & Niu, S. Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environ. Res. Lett. 11, 024012 (2016).

    Article  Google Scholar 

  17. Crowley, K. F. et al. Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the northeastern United States? Ecosystems 15, 940–957 (2012).

    Article  Google Scholar 

  18. Johnson, D. W. Progressive N limitation in forests: review and implications for long-term responses to elevated CO2. Ecology 87, 64–75 (2006).

    Article  Google Scholar 

  19. Craine, J. M. et al. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nat. Ecol. Evol. 2, 1735–1744 (2018).

    Article  Google Scholar 

  20. Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).

    Article  Google Scholar 

  21. Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).

    Article  Google Scholar 

  22. Koerselman, W. & Meuleman, A. F. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1450 (1996).

    Article  Google Scholar 

  23. Tessier, J. T. & Raynal, D. J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J. Appl. Ecol. 40, 523–534 (2003).

    Article  Google Scholar 

  24. Güsewell, S. N:P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266 (2004).

    Article  Google Scholar 

  25. Sullivan, B. W. et al. Assessing nutrient limitation in complex forested ecosystems: alternatives to large-scale fertilization experiments. Ecology 95, 668–681 (2014).

    Article  Google Scholar 

  26. Yan, Z., Tian, D., Han, W., Tang, Z. & Fang, J. An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants. Ann. Bot. (Lond.) 120, 937–942 (2017).

    Article  Google Scholar 

  27. Kobe, R. K., Lepczyk, C. A. & Iyer, M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86, 2780–2792 (2005).

    Article  Google Scholar 

  28. Yuan, Z. Y. & Chen, H. Y. Negative effects of fertilization on plant nutrient resorption. Ecology 96, 373–380 (2015).

    Article  Google Scholar 

  29. Han, W., Tang, L., Chen, Y. & Fang, J. Relationship between the relative limitation and resorption efficiency of nitrogen vs phosphorus in woody plants. PLoS ONE 8, e83366 (2013).

    Article  Google Scholar 

  30. Reed, S. C., Townsend, A. R., Davidson, E. A. & Cleveland, C. C. Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytol. 196, 173–180 (2012).

    Article  Google Scholar 

  31. Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere (Princeton Univ. Press, 2002).

  32. Hooker, H. D. Liebig’s law of the minimum in relation to general biological problems. Science 46, 197–204 (1917).

    Article  Google Scholar 

  33. Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82, 205–220 (2012).

    Article  Google Scholar 

  34. McGroddy, M. E., Daufresne, T. & Hedin, L. O. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85, 2390–2401 (2004).

    Article  Google Scholar 

  35. Yuan, Z. Y. & Chen, H. Y. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Glob. Ecol. Biogeogr. 18, 11–18 (2009).

    Article  Google Scholar 

  36. Augusto, L., Achat, D. L., Jonard, M., Vidal, D. & Ringeval, B. Soil parent material—a major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Change Biol. 23, 3808–3824 (2017).

    Article  Google Scholar 

  37. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

    Article  Google Scholar 

  38. Fay, P. A. et al. Grassland productivity limited by multiple nutrients. Nat. Plants 1, 15080 (2015).

    Article  Google Scholar 

  39. Juice, S. M. et al. Response of sugar maple to calcium addition to northern hardwood forest. Ecology 87, 1267–1280 (2006).

    Article  Google Scholar 

  40. Luo, Y., Su, B., Currie, W. S. & Dukes, J. S. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731–739 (2004).

    Article  Google Scholar 

  41. Vitousek, P. M. et al. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57, 1–45 (2002).

    Article  Google Scholar 

  42. Bai, E. et al. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol. 199, 441–451 (2013).

    Article  Google Scholar 

  43. Cohen, J., Cohen, P., West, S. G. & Aiken, L. S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences 3rd edn (Erlbaum, 2003).

  44. Calcagno, V. & de Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).

    Article  Google Scholar 

  45. Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).

    Article  Google Scholar 

  46. Pena, E. A. & Slate, E. H. Global validation of linear model assumptions. J. Am. Stat. Assoc. 101, 341–354 (2006).

    Article  Google Scholar 

  47. Fox, J., Friendly, M. & Weisberg, S. Hypothesis tests for multivariate linear models using the car package. R J. 5, 39–52 (2013).

    Article  Google Scholar 

  48. Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article  Google Scholar 

  49. Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).

    Article  Google Scholar 

  50. De Boeck, P. et al. The estimation of item response models with the lmer function from the lme4 package in R. J. Stat. Softw. 39, 1–28 (2011).

    Article  Google Scholar 

  51. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1548–7660 (2017).

    Article  Google Scholar 

  52. Breheny, P. & Burchett, W. Visualization of regression models using visreg. R J. 9, 56–71 (2013).

    Article  Google Scholar 

  53. Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  54. Probst, P., Wright, M. N. & Boulesteix, A. L. Hyperparameters and tuning strategies for random forest. WIREs Data Min. Knowl. Discov. 9, e1301 (2019).

    Google Scholar 

  55. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41877328, 41630750 and 31400381), Fok Ying-Tong Education Foundation (161015) and Project of State Key Laboratory of Earth Surface and Resource Ecology of Beijing Normal University (2017-ZY-07). C.T. was supported by a Lawrence Fellow award through the Lawrence Livermore National Laboratory (LLNL), by the US Department of Energy (grant no. DE-AC52-07NA27344) and by the LLNL-LDRD Program (grant no. 20-ERD-055). We are grateful to J. Tan, J. S. Fu and F. Dentener for providing data on the global N deposition. We thank P. Vitousek for his useful comments on an earlier version of the manuscript and Stanford University for its visiting scholars program.

Author information

Authors and Affiliations

Authors

Contributions

E.D. conceived the project. R.B.J., C.T., A.F.A.P., A.A. and C.J.V.L. contributed ideas to the analysis. E.D., N.X., and X.W. compiled the database. E.D., X.Z., C.T. and C.J.V.L. analysed the data. E.D., R.B.J., C.T., A.F.A.P. and A.A. wrote and revised the manuscript.

Corresponding authors

Correspondence to Enzai Du or Robert B. Jackson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editors: Tamara Goldin, Xujia Jiang.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

The Supplementary Information contains Supplementary Figs. 1–7, Tables 1–9 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, E., Terrer, C., Pellegrini, A.F.A. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020). https://doi.org/10.1038/s41561-019-0530-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0530-4

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene