Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Changes in atmospheric shortwave absorption as important driver of dimming and brightening

Abstract

The amount of solar (shortwave) radiation that reaches the Earth’s surface underwent substantial variations over recent decades. Since the 1950s, surface shortwave radiation gradually decreased at widespread locations. In Europe, this so-called surface dimming continued until the late 1980s, when surface brightening set in and surface shortwave radiation increased again. In China, the dimming levelled off in the 1980s, but did not turn into brightening until 2005. Changes in clouds and aerosol are the prime potential causes for the phenomenon, but the scientific community has not yet reached a consensus about the relative role of the different potential forcing agents. Here we bring together co-located long-term observational data from surface and space to study decadal changes of the shortwave energy balance in Europe and China from 1985 to 2015. Within this observation-based framework, we show that an increasing net shortwave radiation at the top of the atmosphere and a decreasing atmospheric shortwave absorption each contribute roughly half of the observed brightening trends in Europe. For China, we find that the continued dimming until 2005 and the subsequent brightening occurred despite opposing trends in the top-of-the-atmosphere net shortwave radiation. This shows that changes in atmospheric shortwave absorption are a major driver of European brightening and the dominant cause for the Chinese surface trends. Although the observed variations cannot be attributed unambiguously, we discuss potential causes for the observed changes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Long-term mean (2000–2015) fractional Aatm.
Fig. 2: Anomaly time series of shortwave energy balance quantities.
Fig. 3: Trend matrices for the shortwave flux data.
Fig. 4: Comparison of TOA net shortwave fluxes from different data sources.

Data availability

The DEEP-C data are available via https://doi.org/10.17864/1947.111. The GLASS data are available via http://www.glass.umd.edu/Download.html. The BSRN data are available via https://bsrn.awi.de/. The GEBA data is available via http://www.geba.ethz.ch/. The CMA data can be accessed from the China Meteorological Administration at http://www.cma.gov.cn/.

Code availability

All code used in this study to perform the analyses and to create the figures can be made available upon request to the corresponding author.

References

  1. 1.

    Wild, M. Global dimming and brightening: a review. J. Geophys. Res. 114, D00D16 (2009).

    Google Scholar 

  2. 2.

    Ohmura, A. & Lang, H. in IRS ’88: Current Problems in Atmospheric Radiation: International Radiation Symposium in Lille, France, 18–24 August 1988 (eds Lenoble, J. & Geleyn, J.-F.) 98–301 (Deepak, 1989).

  3. 3.

    Wild, M. et al. From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308, 847–850 (2005).

    Article  Google Scholar 

  4. 4.

    Yang, S., Wang, X. L. & Wild, M. Homogenization and trend analysis of the 1958–2016 in situ surface solar radiation records in China. J. Clim. 31, 4529–4541 (2018).

    Article  Google Scholar 

  5. 5.

    Abbot, C. G. & Fowle, F. E. Radiation and terrestrial temperature. Ann. Astr. Obs. Smithson. Inst. 2, 125–224 (1908).

    Google Scholar 

  6. 6.

    Wild, M. et al. The global energy balance from a surface perspective. Clim. Dynam. 40, 3107–3134 (2013).

    Article  Google Scholar 

  7. 7.

    Andreae, M. O., Jones, C. D. & Cox, P. M. Strong present-day aerosol cooling implies a hot future. Nature 435, 1187–1190 (2005).

    Article  Google Scholar 

  8. 8.

    Wild, M., Ohmura, A. & Makowski, K. Impact of global dimming and brightening on global warming. Geophys. Res. Lett. 34, L04702 (2007).

    Article  Google Scholar 

  9. 9.

    Wild, M. & Liepert, B. The Earth radiation balance as driver of the global hydrological cycle. Environ. Res. Lett. 5, 025203 (2010).

    Article  Google Scholar 

  10. 10.

    Ramanathan, V. et al. Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc. Natl Acad. Sci. USA 102, 5326–5333 (2005).

    Article  Google Scholar 

  11. 11.

    Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).

    Article  Google Scholar 

  12. 12.

    Ramanathan, V., Crutzen, P. J., Kiehl, J. T. & Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science 294, 2119–2124 (2001).

    Article  Google Scholar 

  13. 13.

    Persad, G. G., Paynter, D. J., Ming, Y. & Ramaswamy, V. Competing atmospheric and surface-driven impacts of absorbing aerosols on the East Asian summertime climate. J. Clim. 30, 8929–8949 (2017).

    Article  Google Scholar 

  14. 14.

    IPCC. Special Report Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  15. 15.

    Cess, R. D., Potter, G. L., Ghan, S. J. & Gates, W. L. The climatic effects of large injections of atmospheric smoke and dust: a study of climate feedback mechanisms with one- and three-dimensional climate models. J. Geophys. Res. Atmos. 90, 12937–12950 (1985).

    Article  Google Scholar 

  16. 16.

    Menon, S., Hansen, J., Nazarenko, L. & Luo, Y. Climate effects of black carbon aerosols in China and India. Science 297, 2250–2253 (2002).

    Article  Google Scholar 

  17. 17.

    Shindell, D. & Faluvegi, G. Climate response to regional radiative forcing during the twentieth century. Nat. Geosci. 2, 294–300 (2009).

    Article  Google Scholar 

  18. 18.

    Bond, T. C. et al. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118, 5380–5552 (2013).

    Article  Google Scholar 

  19. 19.

    Andrews, T., Forster, P. M., Boucher, O., Bellouin, N. & Jones, A. Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett. 37, L14701 (2010).

    Article  Google Scholar 

  20. 20.

    Driemel, A. et al. Baseline surface radiation network (BSRN): structure and data description (1992–2017). Earth Syst. Sci. Data 10, 1491–1501 (2018).

    Article  Google Scholar 

  21. 21.

    Wild, M. et al. The global energy balance archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes. Earth Syst. Sci. Data 9, 601–613 (2017).

    Article  Google Scholar 

  22. 22.

    Liang, S. et al. A long-term global land surface satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth 6, 5–33 (2013).

    Article  Google Scholar 

  23. 23.

    Allan, R. P. et al. Changes in global net radiative imbalance 1985–2012. Geophys. Res. Lett. 41, 5588–5597 (2014).

    Article  Google Scholar 

  24. 24.

    Liu, C. et al. Evaluation of satellite and reanalysis-based global net surface energy flux and uncertainty estimates. J. Geophys. Res. Atmos. 122, 6250–6272 (2017).

    Article  Google Scholar 

  25. 25.

    Schwarz, M., Folini, D., Hakuba, M. Z. & Wild, M. From point to area: worldwide assessment of the representativeness of monthly surface solar radiation records. J. Geophys. Res. Atmos. 123, 13857–13874 (2018).

    Article  Google Scholar 

  26. 26.

    Hakuba, M. Z., Sanchez-Lorenzo, A., Folini, D. & Wild, M. Testing the homogeneity of short-term surface solar radiation series in Europe. AIP Conf. Proc. 1531, 700–703 (2013).

    Article  Google Scholar 

  27. 27.

    Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 90, 311–324 (2009).

    Article  Google Scholar 

  28. 28.

    Stephens, G. L. et al. An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 5, 691–696 (2012).

    Article  Google Scholar 

  29. 29.

    Hakuba, M. Z., Folini, D. & Wild, M. On the zonal near-constancy of fractional solar absorption in the atmosphere. J. Clim. 29, 3423–3440 (2016).

    Article  Google Scholar 

  30. 30.

    Hakuba, M. Z., Folini, D., Schaepman-Strub, G. & Wild, M. Solar absorption over Europe from collocated surface and satellite observations. J. Geophys. Res. Atmos. 119, 3420–3437 (2014).

    Article  Google Scholar 

  31. 31.

    Sanchez-Lorenzo, A. et al. Reassessment and update of long-term trends in downward surface shortwave radiation over Europe (1939–2012). J. Geophys. Res. Atmos. 120, 9555–9569 (2015).

    Article  Google Scholar 

  32. 32.

    Tang, W.-J., Yang, K., Qin, J., Cheng, C. C. K. & He, J. Solar radiation trend across China in recent decades: a revisit with quality-controlled data. Atmos. Chem. Phys. 11, 393–406 (2011).

    Article  Google Scholar 

  33. 33.

    Lu, Z. et al. Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. Atmos. Chem. Phys. 10, 6311–6331 (2010).

    Article  Google Scholar 

  34. 34.

    Jin, Y., Andersson, H. & Zhang, S. Air pollution control policies in China: a retrospective and prospects. Int. J. Environ. Res. Public Health 13, 1219 (2016).

    Article  Google Scholar 

  35. 35.

    Li, J., Jiang, Y., Xia, X. & Hu, Y. Increase of surface solar irradiance across East China related to changes in aerosol properties during the past decade. Environ. Res. Lett. 13, 034006 (2018).

    Article  Google Scholar 

  36. 36.

    Zheng, B. et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 18, 14095–14111 (2018).

    Article  Google Scholar 

  37. 37.

    Folini, D., Dallafior, T. N., Hakuba, M. Z. & Wild, M. Trends of surface solar radiation in unforced CMIP5 simulations. J. Geophys. Res. Atmos. 122, 469–484 (2017).

    Article  Google Scholar 

  38. 38.

    Wang, Y. W. & Yang, Y. H. China’s dimming and brightening: evidence, causes and hydrological implications. Ann. Geophys. 32, 41–55 (2014).

    Article  Google Scholar 

  39. 39.

    Kvalevåg, M. M. & Myhre, G. Human impact on direct and diffuse solar radiation during the industrial era. J. Clim. 20, 4874–4883 (2007).

    Article  Google Scholar 

  40. 40.

    Xia, X. Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954–2005. J. Geophys. Res. Atmos. 115, D00K06 (2010).

    Article  Google Scholar 

  41. 41.

    Li, M. et al. Anthropogenic emission inventories in China: a review. Natl Sci. Rev. 4, 834–866 (2017).

    Article  Google Scholar 

  42. 42.

    Liu, Y., Wang, N., Wang, L., Guo, Z. & Wu, X. Variation of cloud amount over China and the relationship with ENSO from 1951 to 2014. Int. J. Climatol. 36, 2931–2941 (2016).

    Article  Google Scholar 

  43. 43.

    Li, Z. et al. Aerosol and monsoon climate interactions over Asia. Rev. Geophys. 54, 866–929 (2016).

    Article  Google Scholar 

  44. 44.

    Wild, M. et al. The cloud-free global energy balance and inferred cloud radiative effects: an assessment based on direct observations and climate models. Clim. Dynam. 52, 4787–4812 (2018).

    Article  Google Scholar 

  45. 45.

    Gui, K. et al. Water vapor variation and the effect of aerosols in China. Atmos. Environ. 165, 322–335 (2017).

    Article  Google Scholar 

  46. 46.

    Yang, S., Wang, X. L. & Wild, M. Causes of dimming and brightening in China inferred from homogenized daily clear-sky and all-sky in situ surface solar radiation records (1958–2016). J. Clim. 32, 5901–5913 (2019).

    Article  Google Scholar 

  47. 47.

    Filonchyk, M. et al. Combined use of satellite and surface observations to study aerosol optical depth in different regions of China. Sci. Rep. 9, 6174 (2019).

    Article  Google Scholar 

  48. 48.

    Sun, E. et al. Variation in MERRA-2 aerosol optical depth and absorption aerosol optical depth over China from 1980 to 2017. J. Atmos. Sol.-Terr. Phys. 186, 8–19 (2019).

    Article  Google Scholar 

  49. 49.

    Wang, R. et al. Estimation of global black carbon direct radiative forcing and its uncertainty constrained by observations. J. Geophys. Res. Atmos. 121, 5948–5971 (2016).

    Article  Google Scholar 

  50. 50.

    Ackerman, A. S. et al. Reduction of tropical cloudiness by soot. Science 288, 1042–1047 (2000).

    Article  Google Scholar 

  51. 51.

    Koch, D. & Genio, A. D. D. Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos. Chem. Phys. 10, 7685–7696 (2010).

    Article  Google Scholar 

  52. 52.

    Li, Z. et al. Aerosol optical properties and their radiative effects in northern China. J. Geophys. Res. Atmos. 112, D22S01 (2007).

    Google Scholar 

  53. 53.

    Li, Z., Lee, K.-H., Wang, Y., Xin, J. & Hao, J.-M. First observation-based estimates of cloud-free aerosol radiative forcing across China. J. Geophys. Res. Atmos. 115, D00K18 (2010).

    Google Scholar 

  54. 54.

    Samset, B. H. et al. Climate impacts from a removal of anthropogenic aerosol emissions. Geophys. Res. Lett. 45, 1020–1029 (2018).

    Article  Google Scholar 

  55. 55.

    Boers, R., Brandsma, T. & Siebesma, A. P. Impact of aerosols and clouds on decadal trends in all-sky solar radiation over the Netherlands (1966–2015). Atmos. Chem. Phys. 17, 8081–8100 (2017).

    Article  Google Scholar 

  56. 56.

    Sanchez-Lorenzo, A. et al. Fewer clouds in the Mediterranean: consistency of observations and climate simulations. Sci. Rep. 7, 41475 (2017).

    Article  Google Scholar 

  57. 57.

    Pfeifroth, U., Sanchez-Lorenzo, A., Manara, V., Trentmann, J. & Hollmann, R. Trends and variability of surface solar radiation in Europe based on surface- and satellite-based data records. J. Geophys. Res. Atmos. 123, 1735–1754 (2018).

    Article  Google Scholar 

  58. 58.

    Norris, J. R. & Wild, M. Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar ‘dimming’, and solar ‘brightening’. J. Geophys. Res. 112, D08214 (2007).

    Article  Google Scholar 

  59. 59.

    Nabat, P., Somot, S., Mallet, M., Sanchez-Lorenzo, A. & Wild, M. Contribution of anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980. Geophys. Res. Lett. 41, 5605–5611 (2014).

    Article  Google Scholar 

  60. 60.

    Granier, C. et al. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change 109, 163–190 (2011).

    Article  Google Scholar 

  61. 61.

    Philipona, R., Behrens, K. & Ruckstuhl, C. How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys. Res. Lett. 36, L02806 (2009).

    Article  Google Scholar 

  62. 62.

    Ruckstuhl, C., Norris, J. R. & Philipona, R. Is there evidence for an aerosol indirect effect during the recent aerosol optical depth decline in Europe? J. Geophys. Res. Atmos. 115, D04204 (2010).

    Article  Google Scholar 

  63. 63.

    Parding, K. M. et al. Influence of synoptic weather patterns on solar irradiance variability in Northern Europe. J. Clim. 29, 4229–4250 (2016).

    Article  Google Scholar 

  64. 64.

    Wild, M. How well do IPCC-AR4/CMIP3 climate models simulate global dimming/brightening and twentieth-century daytime and nighttime warming? J. Geophys. Res. 114, D00D11 (2009).

    Google Scholar 

  65. 65.

    Allen, R. J., Norris, J. R. & Wild, M. Evaluation of multidecadal variability in CMIP5 surface solar radiation and inferred underestimation of aerosol direct effects over Europe, China, Japan, and India. J. Geophys. Res. Atmos, 118, 6311–6336 (2013).

    Article  Google Scholar 

  66. 66.

    Roesch, A. et al. Assessment of BSRN radiation records for the computation of monthly means. Atmos. Meas. Tech. 4, 339–354 (2011).

    Article  Google Scholar 

  67. 67.

    Schwarz, M., Folini, D., Hakuba, M. Z. & Wild, M. Spatial representativeness of surface-measured variations of downward solar radiation. J. Geophys. Res. Atmos. 122, 13319–13337 (2017).

    Article  Google Scholar 

  68. 68.

    Dutton, E. et al. in GEWEX Radiative Flux Assessment (RFA) Vol. 1 (eds Raschke, E. et al.) 135–158 (World Climate Research Programme, 2012).

  69. 69.

    Gilgen, H., Wild, M. & Ohmura, A. Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. J. Clim. 11, 2042–2061 (1998).

    Article  Google Scholar 

  70. 70.

    Shi, G.-Y. et al. Data quality assessment and the long-term trend of ground solar radiation in China. J. Appl. Meteorol. Climatol. 47, 1006–1016 (2008).

    Article  Google Scholar 

  71. 71.

    McArthur, L. J. B. Baseline Surface Radiation Network (BSRN) Operations Manual, Version 2.1 WMO/TD-No. 1274 (World Climate Research Programme, 2005).

  72. 72.

    Wang, K., Ma, Q., Li, Z. & Wang, J. Decadal variability of surface incident solar radiation over China: observations, satellite retrievals, and reanalyses. J. Geophys. Res. Atmos. 120, 6500–6514 (2015).

    Article  Google Scholar 

  73. 73.

    Wielicki, B. A. et al. Clouds and the Earth’s Radiant Energy System (CERES): an Earth observing system experiment. Bull. Am. Meteorol. Soc. 77, 853–868 (1996).

    Article  Google Scholar 

  74. 74.

    Loeb, N. G. et al. Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Clim. 22, 748–766 (2009).

    Article  Google Scholar 

  75. 75.

    Barkstrom, B. R. The Earth Radiation Budget Experiment (ERBE). Bull. Am. Meteorol. Soc. 65, 1170–1185 (1984).

    Article  Google Scholar 

  76. 76.

    Wong, T. et al. Reexamination of the observed decadal variability of the Earth radiation budget using altitude-corrected ERBE/ERBS Nonscanner WFOV data. J. Clim. 19, 4028–4040 (2006).

    Article  Google Scholar 

  77. 77.

    Dee, D. P. et al. The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  78. 78.

    Mizielinski, M. S. et al. High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign. Geosci. Model Develop. 7, 1629–1640 (2014).

    Article  Google Scholar 

  79. 79.

    Loeb, N. G. et al. Clouds and the Earth’s radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Clim. 31, 895–918 (2017).

    Article  Google Scholar 

  80. 80.

    Shrestha, A. K. et al. Spectral unfiltering of ERBE WFOV nonscanner shortwave observations and revisiting its radiation dataset from 1985 to 1998. AIP Conf. Proc. 1810, 090008 (2017).

    Article  Google Scholar 

  81. 81.

    Liu, Q. et al. Preliminary evaluation of the long-term GLASS albedo product. Int. J. Digit. Earth 6, 69–95 (2013).

    Article  Google Scholar 

  82. 82.

    Schaaf, C. B. & Wang, Z. MCD43A1 MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global—500 m V006 (Earthdata, 2015).

  83. 83.

    Schaaf, C. B., Liu, J., Gao, F. & Strahler, A. H. in Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS (eds Ramachandran, B., Justice, C. O. & Abrams, M. J.) 549–561 (Springer, 2010).

Download references

Acknowledgements

This study was funded by the Swiss National Science Foundation grant 20002_159938/1 (Towards an improved understanding of the Global Energy Balance: temporal variations of solar radiation in the climate system). S.Y. was funded by the National Natural Science Foundation of China (Grant 41805128). R.P.A. was funded by the Natural Environment Research Council (NERC) SMURPHS Grant NE/N006054/1. We thank all the people who were involved in collecting, processing and storing the surface radiation data for the radiation networks BSRN, GEBA and CMA. GEBA is supported by the Federal Office of Meteorology and Climatology MeteoSwiss in the framework of GCOS Switzerland. We thank the CERES, ERBE and DEEP-C teams, and the AVHRR, MODIS and GLASS teams for collecting, creating and offering the datasets.

Author information

Affiliations

Authors

Contributions

M.S., D.F. and M.W. designed the study. Y.S. processed the in situ data for China. R.P.A. provided the DEEP-C data and helped interpret it. M.S. did the coding and data analysis with the help of all the co-authors. M.S., D.F. and M.W. wrote the paper with contributions from all co-authors.

Corresponding author

Correspondence to M. Schwarz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary handling editor: Heike Langenberg.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schwarz, M., Folini, D., Yang, S. et al. Changes in atmospheric shortwave absorption as important driver of dimming and brightening. Nat. Geosci. 13, 110–115 (2020). https://doi.org/10.1038/s41561-019-0528-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing