Changes in atmospheric shortwave absorption as important driver of dimming and brightening

Abstract

The amount of solar (shortwave) radiation that reaches the Earth’s surface underwent substantial variations over recent decades. Since the 1950s, surface shortwave radiation gradually decreased at widespread locations. In Europe, this so-called surface dimming continued until the late 1980s, when surface brightening set in and surface shortwave radiation increased again. In China, the dimming levelled off in the 1980s, but did not turn into brightening until 2005. Changes in clouds and aerosol are the prime potential causes for the phenomenon, but the scientific community has not yet reached a consensus about the relative role of the different potential forcing agents. Here we bring together co-located long-term observational data from surface and space to study decadal changes of the shortwave energy balance in Europe and China from 1985 to 2015. Within this observation-based framework, we show that an increasing net shortwave radiation at the top of the atmosphere and a decreasing atmospheric shortwave absorption each contribute roughly half of the observed brightening trends in Europe. For China, we find that the continued dimming until 2005 and the subsequent brightening occurred despite opposing trends in the top-of-the-atmosphere net shortwave radiation. This shows that changes in atmospheric shortwave absorption are a major driver of European brightening and the dominant cause for the Chinese surface trends. Although the observed variations cannot be attributed unambiguously, we discuss potential causes for the observed changes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Long-term mean (2000–2015) fractional Aatm.
Fig. 2: Anomaly time series of shortwave energy balance quantities.
Fig. 3: Trend matrices for the shortwave flux data.
Fig. 4: Comparison of TOA net shortwave fluxes from different data sources.

Data availability

The DEEP-C data are available via https://doi.org/10.17864/1947.111. The GLASS data are available via http://www.glass.umd.edu/Download.html. The BSRN data are available via https://bsrn.awi.de/. The GEBA data is available via http://www.geba.ethz.ch/. The CMA data can be accessed from the China Meteorological Administration at http://www.cma.gov.cn/.

Code availability

All code used in this study to perform the analyses and to create the figures can be made available upon request to the corresponding author.

References

  1. 1.

    Wild, M. Global dimming and brightening: a review. J. Geophys. Res. 114, D00D16 (2009).

  2. 2.

    Ohmura, A. & Lang, H. in IRS ’88: Current Problems in Atmospheric Radiation: International Radiation Symposium in Lille, France, 18–24 August 1988 (eds Lenoble, J. & Geleyn, J.-F.) 98–301 (Deepak, 1989).

  3. 3.

    Wild, M. et al. From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308, 847–850 (2005).

  4. 4.

    Yang, S., Wang, X. L. & Wild, M. Homogenization and trend analysis of the 1958–2016 in situ surface solar radiation records in China. J. Clim. 31, 4529–4541 (2018).

  5. 5.

    Abbot, C. G. & Fowle, F. E. Radiation and terrestrial temperature. Ann. Astr. Obs. Smithson. Inst. 2, 125–224 (1908).

  6. 6.

    Wild, M. et al. The global energy balance from a surface perspective. Clim. Dynam. 40, 3107–3134 (2013).

  7. 7.

    Andreae, M. O., Jones, C. D. & Cox, P. M. Strong present-day aerosol cooling implies a hot future. Nature 435, 1187–1190 (2005).

  8. 8.

    Wild, M., Ohmura, A. & Makowski, K. Impact of global dimming and brightening on global warming. Geophys. Res. Lett. 34, L04702 (2007).

  9. 9.

    Wild, M. & Liepert, B. The Earth radiation balance as driver of the global hydrological cycle. Environ. Res. Lett. 5, 025203 (2010).

  10. 10.

    Ramanathan, V. et al. Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc. Natl Acad. Sci. USA 102, 5326–5333 (2005).

  11. 11.

    Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).

  12. 12.

    Ramanathan, V., Crutzen, P. J., Kiehl, J. T. & Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science 294, 2119–2124 (2001).

  13. 13.

    Persad, G. G., Paynter, D. J., Ming, Y. & Ramaswamy, V. Competing atmospheric and surface-driven impacts of absorbing aerosols on the East Asian summertime climate. J. Clim. 30, 8929–8949 (2017).

  14. 14.

    IPCC. Special Report Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  15. 15.

    Cess, R. D., Potter, G. L., Ghan, S. J. & Gates, W. L. The climatic effects of large injections of atmospheric smoke and dust: a study of climate feedback mechanisms with one- and three-dimensional climate models. J. Geophys. Res. Atmos. 90, 12937–12950 (1985).

  16. 16.

    Menon, S., Hansen, J., Nazarenko, L. & Luo, Y. Climate effects of black carbon aerosols in China and India. Science 297, 2250–2253 (2002).

  17. 17.

    Shindell, D. & Faluvegi, G. Climate response to regional radiative forcing during the twentieth century. Nat. Geosci. 2, 294–300 (2009).

  18. 18.

    Bond, T. C. et al. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118, 5380–5552 (2013).

  19. 19.

    Andrews, T., Forster, P. M., Boucher, O., Bellouin, N. & Jones, A. Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett. 37, L14701 (2010).

  20. 20.

    Driemel, A. et al. Baseline surface radiation network (BSRN): structure and data description (1992–2017). Earth Syst. Sci. Data 10, 1491–1501 (2018).

  21. 21.

    Wild, M. et al. The global energy balance archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes. Earth Syst. Sci. Data 9, 601–613 (2017).

  22. 22.

    Liang, S. et al. A long-term global land surface satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth 6, 5–33 (2013).

  23. 23.

    Allan, R. P. et al. Changes in global net radiative imbalance 1985–2012. Geophys. Res. Lett. 41, 5588–5597 (2014).

  24. 24.

    Liu, C. et al. Evaluation of satellite and reanalysis-based global net surface energy flux and uncertainty estimates. J. Geophys. Res. Atmos. 122, 6250–6272 (2017).

  25. 25.

    Schwarz, M., Folini, D., Hakuba, M. Z. & Wild, M. From point to area: worldwide assessment of the representativeness of monthly surface solar radiation records. J. Geophys. Res. Atmos. 123, 13857–13874 (2018).

  26. 26.

    Hakuba, M. Z., Sanchez-Lorenzo, A., Folini, D. & Wild, M. Testing the homogeneity of short-term surface solar radiation series in Europe. AIP Conf. Proc. 1531, 700–703 (2013).

  27. 27.

    Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 90, 311–324 (2009).

  28. 28.

    Stephens, G. L. et al. An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 5, 691–696 (2012).

  29. 29.

    Hakuba, M. Z., Folini, D. & Wild, M. On the zonal near-constancy of fractional solar absorption in the atmosphere. J. Clim. 29, 3423–3440 (2016).

  30. 30.

    Hakuba, M. Z., Folini, D., Schaepman-Strub, G. & Wild, M. Solar absorption over Europe from collocated surface and satellite observations. J. Geophys. Res. Atmos. 119, 3420–3437 (2014).

  31. 31.

    Sanchez-Lorenzo, A. et al. Reassessment and update of long-term trends in downward surface shortwave radiation over Europe (1939–2012). J. Geophys. Res. Atmos. 120, 9555–9569 (2015).

  32. 32.

    Tang, W.-J., Yang, K., Qin, J., Cheng, C. C. K. & He, J. Solar radiation trend across China in recent decades: a revisit with quality-controlled data. Atmos. Chem. Phys. 11, 393–406 (2011).

  33. 33.

    Lu, Z. et al. Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. Atmos. Chem. Phys. 10, 6311–6331 (2010).

  34. 34.

    Jin, Y., Andersson, H. & Zhang, S. Air pollution control policies in China: a retrospective and prospects. Int. J. Environ. Res. Public Health 13, 1219 (2016).

  35. 35.

    Li, J., Jiang, Y., Xia, X. & Hu, Y. Increase of surface solar irradiance across East China related to changes in aerosol properties during the past decade. Environ. Res. Lett. 13, 034006 (2018).

  36. 36.

    Zheng, B. et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 18, 14095–14111 (2018).

  37. 37.

    Folini, D., Dallafior, T. N., Hakuba, M. Z. & Wild, M. Trends of surface solar radiation in unforced CMIP5 simulations. J. Geophys. Res. Atmos. 122, 469–484 (2017).

  38. 38.

    Wang, Y. W. & Yang, Y. H. China’s dimming and brightening: evidence, causes and hydrological implications. Ann. Geophys. 32, 41–55 (2014).

  39. 39.

    Kvalevåg, M. M. & Myhre, G. Human impact on direct and diffuse solar radiation during the industrial era. J. Clim. 20, 4874–4883 (2007).

  40. 40.

    Xia, X. Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954–2005. J. Geophys. Res. Atmos. 115, D00K06 (2010).

  41. 41.

    Li, M. et al. Anthropogenic emission inventories in China: a review. Natl Sci. Rev. 4, 834–866 (2017).

  42. 42.

    Liu, Y., Wang, N., Wang, L., Guo, Z. & Wu, X. Variation of cloud amount over China and the relationship with ENSO from 1951 to 2014. Int. J. Climatol. 36, 2931–2941 (2016).

  43. 43.

    Li, Z. et al. Aerosol and monsoon climate interactions over Asia. Rev. Geophys. 54, 866–929 (2016).

  44. 44.

    Wild, M. et al. The cloud-free global energy balance and inferred cloud radiative effects: an assessment based on direct observations and climate models. Clim. Dynam. 52, 4787–4812 (2018).

  45. 45.

    Gui, K. et al. Water vapor variation and the effect of aerosols in China. Atmos. Environ. 165, 322–335 (2017).

  46. 46.

    Yang, S., Wang, X. L. & Wild, M. Causes of dimming and brightening in China inferred from homogenized daily clear-sky and all-sky in situ surface solar radiation records (1958–2016). J. Clim. 32, 5901–5913 (2019).

  47. 47.

    Filonchyk, M. et al. Combined use of satellite and surface observations to study aerosol optical depth in different regions of China. Sci. Rep. 9, 6174 (2019).

  48. 48.

    Sun, E. et al. Variation in MERRA-2 aerosol optical depth and absorption aerosol optical depth over China from 1980 to 2017. J. Atmos. Sol.-Terr. Phys. 186, 8–19 (2019).

  49. 49.

    Wang, R. et al. Estimation of global black carbon direct radiative forcing and its uncertainty constrained by observations. J. Geophys. Res. Atmos. 121, 5948–5971 (2016).

  50. 50.

    Ackerman, A. S. et al. Reduction of tropical cloudiness by soot. Science 288, 1042–1047 (2000).

  51. 51.

    Koch, D. & Genio, A. D. D. Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos. Chem. Phys. 10, 7685–7696 (2010).

  52. 52.

    Li, Z. et al. Aerosol optical properties and their radiative effects in northern China. J. Geophys. Res. Atmos. 112, D22S01 (2007).

  53. 53.

    Li, Z., Lee, K.-H., Wang, Y., Xin, J. & Hao, J.-M. First observation-based estimates of cloud-free aerosol radiative forcing across China. J. Geophys. Res. Atmos. 115, D00K18 (2010).

  54. 54.

    Samset, B. H. et al. Climate impacts from a removal of anthropogenic aerosol emissions. Geophys. Res. Lett. 45, 1020–1029 (2018).

  55. 55.

    Boers, R., Brandsma, T. & Siebesma, A. P. Impact of aerosols and clouds on decadal trends in all-sky solar radiation over the Netherlands (1966–2015). Atmos. Chem. Phys. 17, 8081–8100 (2017).

  56. 56.

    Sanchez-Lorenzo, A. et al. Fewer clouds in the Mediterranean: consistency of observations and climate simulations. Sci. Rep. 7, 41475 (2017).

  57. 57.

    Pfeifroth, U., Sanchez-Lorenzo, A., Manara, V., Trentmann, J. & Hollmann, R. Trends and variability of surface solar radiation in Europe based on surface- and satellite-based data records. J. Geophys. Res. Atmos. 123, 1735–1754 (2018).

  58. 58.

    Norris, J. R. & Wild, M. Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar ‘dimming’, and solar ‘brightening’. J. Geophys. Res. 112, D08214 (2007).

  59. 59.

    Nabat, P., Somot, S., Mallet, M., Sanchez-Lorenzo, A. & Wild, M. Contribution of anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980. Geophys. Res. Lett. 41, 5605–5611 (2014).

  60. 60.

    Granier, C. et al. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change 109, 163–190 (2011).

  61. 61.

    Philipona, R., Behrens, K. & Ruckstuhl, C. How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys. Res. Lett. 36, L02806 (2009).

  62. 62.

    Ruckstuhl, C., Norris, J. R. & Philipona, R. Is there evidence for an aerosol indirect effect during the recent aerosol optical depth decline in Europe? J. Geophys. Res. Atmos. 115, D04204 (2010).

  63. 63.

    Parding, K. M. et al. Influence of synoptic weather patterns on solar irradiance variability in Northern Europe. J. Clim. 29, 4229–4250 (2016).

  64. 64.

    Wild, M. How well do IPCC-AR4/CMIP3 climate models simulate global dimming/brightening and twentieth-century daytime and nighttime warming? J. Geophys. Res. 114, D00D11 (2009).

  65. 65.

    Allen, R. J., Norris, J. R. & Wild, M. Evaluation of multidecadal variability in CMIP5 surface solar radiation and inferred underestimation of aerosol direct effects over Europe, China, Japan, and India. J. Geophys. Res. Atmos, 118, 6311–6336 (2013).

  66. 66.

    Roesch, A. et al. Assessment of BSRN radiation records for the computation of monthly means. Atmos. Meas. Tech. 4, 339–354 (2011).

  67. 67.

    Schwarz, M., Folini, D., Hakuba, M. Z. & Wild, M. Spatial representativeness of surface-measured variations of downward solar radiation. J. Geophys. Res. Atmos. 122, 13319–13337 (2017).

  68. 68.

    Dutton, E. et al. in GEWEX Radiative Flux Assessment (RFA) Vol. 1 (eds Raschke, E. et al.) 135–158 (World Climate Research Programme, 2012).

  69. 69.

    Gilgen, H., Wild, M. & Ohmura, A. Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. J. Clim. 11, 2042–2061 (1998).

  70. 70.

    Shi, G.-Y. et al. Data quality assessment and the long-term trend of ground solar radiation in China. J. Appl. Meteorol. Climatol. 47, 1006–1016 (2008).

  71. 71.

    McArthur, L. J. B. Baseline Surface Radiation Network (BSRN) Operations Manual, Version 2.1 WMO/TD-No. 1274 (World Climate Research Programme, 2005).

  72. 72.

    Wang, K., Ma, Q., Li, Z. & Wang, J. Decadal variability of surface incident solar radiation over China: observations, satellite retrievals, and reanalyses. J. Geophys. Res. Atmos. 120, 6500–6514 (2015).

  73. 73.

    Wielicki, B. A. et al. Clouds and the Earth’s Radiant Energy System (CERES): an Earth observing system experiment. Bull. Am. Meteorol. Soc. 77, 853–868 (1996).

  74. 74.

    Loeb, N. G. et al. Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Clim. 22, 748–766 (2009).

  75. 75.

    Barkstrom, B. R. The Earth Radiation Budget Experiment (ERBE). Bull. Am. Meteorol. Soc. 65, 1170–1185 (1984).

  76. 76.

    Wong, T. et al. Reexamination of the observed decadal variability of the Earth radiation budget using altitude-corrected ERBE/ERBS Nonscanner WFOV data. J. Clim. 19, 4028–4040 (2006).

  77. 77.

    Dee, D. P. et al. The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

  78. 78.

    Mizielinski, M. S. et al. High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign. Geosci. Model Develop. 7, 1629–1640 (2014).

  79. 79.

    Loeb, N. G. et al. Clouds and the Earth’s radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Clim. 31, 895–918 (2017).

  80. 80.

    Shrestha, A. K. et al. Spectral unfiltering of ERBE WFOV nonscanner shortwave observations and revisiting its radiation dataset from 1985 to 1998. AIP Conf. Proc. 1810, 090008 (2017).

  81. 81.

    Liu, Q. et al. Preliminary evaluation of the long-term GLASS albedo product. Int. J. Digit. Earth 6, 69–95 (2013).

  82. 82.

    Schaaf, C. B. & Wang, Z. MCD43A1 MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global—500 m V006 (Earthdata, 2015).

  83. 83.

    Schaaf, C. B., Liu, J., Gao, F. & Strahler, A. H. in Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS (eds Ramachandran, B., Justice, C. O. & Abrams, M. J.) 549–561 (Springer, 2010).

Download references

Acknowledgements

This study was funded by the Swiss National Science Foundation grant 20002_159938/1 (Towards an improved understanding of the Global Energy Balance: temporal variations of solar radiation in the climate system). S.Y. was funded by the National Natural Science Foundation of China (Grant 41805128). R.P.A. was funded by the Natural Environment Research Council (NERC) SMURPHS Grant NE/N006054/1. We thank all the people who were involved in collecting, processing and storing the surface radiation data for the radiation networks BSRN, GEBA and CMA. GEBA is supported by the Federal Office of Meteorology and Climatology MeteoSwiss in the framework of GCOS Switzerland. We thank the CERES, ERBE and DEEP-C teams, and the AVHRR, MODIS and GLASS teams for collecting, creating and offering the datasets.

Author information

M.S., D.F. and M.W. designed the study. Y.S. processed the in situ data for China. R.P.A. provided the DEEP-C data and helped interpret it. M.S. did the coding and data analysis with the help of all the co-authors. M.S., D.F. and M.W. wrote the paper with contributions from all co-authors.

Correspondence to M. Schwarz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary handling editor: Heike Langenberg.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schwarz, M., Folini, D., Yang, S. et al. Changes in atmospheric shortwave absorption as important driver of dimming and brightening. Nat. Geosci. 13, 110–115 (2020). https://doi.org/10.1038/s41561-019-0528-y

Download citation