Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbon release through abrupt permafrost thaw


The permafrost zone is expected to be a substantial carbon source to the atmosphere, yet large-scale models currently only simulate gradual changes in seasonally thawed soil. Abrupt thaw will probably occur in <20% of the permafrost zone but could affect half of permafrost carbon through collapsing ground, rapid erosion and landslides. Here, we synthesize the best available information and develop inventory models to simulate abrupt thaw impacts on permafrost carbon balance. Emissions across 2.5 million km2 of abrupt thaw could provide a similar climate feedback as gradual thaw emissions from the entire 18 million km2 permafrost region under the warming projection of Representative Concentration Pathway 8.5. While models forecast that gradual thaw may lead to net ecosystem carbon uptake under projections of Representative Concentration Pathway 4.5, abrupt thaw emissions are likely to offset this potential carbon sink. Active hillslope erosional features will occupy 3% of abrupt thaw terrain by 2300 but emit one-third of abrupt thaw carbon losses. Thaw lakes and wetlands are methane hot spots but their carbon release is partially offset by slowly regrowing vegetation. After considering abrupt thaw stabilization, lake drainage and soil carbon uptake by vegetation regrowth, we conclude that models considering only gradual permafrost thaw are substantially underestimating carbon emissions from thawing permafrost.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Models of abrupt thaw succession.
Fig. 2: Simulated carbon release due to abrupt thaw.

Data availability

All synthesized data used as model inputs, plus associated references, are provided in the Supplementary Data. Modelled data that support the findings of this study are also provided in the Supplementary Data.

Code availability

RMD files containing full code for the three generalized abrupt thaw models are available at


  1. 1.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Google Scholar 

  2. 2.

    McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).

    Google Scholar 

  3. 3.

    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Google Scholar 

  4. 4.

    Schuur, E. A. G., McGuire, A. D., Romanovsky, V., Schädel, C. & Mack, M. in Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report (eds Cavallaro, N. et al.) 428–468 (US Global Change Research Program, 2018).

  5. 5.

    Schuur, E. A. G. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58, 701–714 (2008).

    Google Scholar 

  6. 6.

    Khvorostyanov, D. V. et al. Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming. Tellus B Chem. Phys. Meteorol. 60, 265–275 (2007).

    Google Scholar 

  7. 7.

    Tarnocai, C. The effect of climate warming on the carbon balance of cryosols in Canada. Permafrost Periglac. Process. 10, 251–263 (1999).

    Google Scholar 

  8. 8.

    Zimov, S. A. et al. Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophys. Res. Lett. 33, L20502 (2006).

    Google Scholar 

  9. 9.

    Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).

    Google Scholar 

  10. 10.

    Abbott, B. W. et al. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environ. Res. Lett. 11, 034014 (2016).

    Google Scholar 

  11. 11.

    Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10, 094011 (2015).

    Google Scholar 

  12. 12.

    Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 373, 20140423 (2015).

    Google Scholar 

  13. 13.

    MacDougall, A. H., Avis, C. A. & Weaver, A. J. Significant existing commitment to warming from the permafrost carbon feedback. Nat. Geosci. 5, 719–721 (2012).

    Google Scholar 

  14. 14.

    Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    Google Scholar 

  15. 15.

    Grosse, G. et al. Vulnerability of high-latitude soil organic carbon in North America to disturbance. J. Geophys. Res. 116, G00K06 (2011).

    Google Scholar 

  16. 16.

    Kokelj, S. V. & Jorgenson, M. T. Advances in thermokarst research. Permafrost Periglac. Process. 24, 108–119 (2013).

    Google Scholar 

  17. 17.

    Walter Anthony, K. M. et al. A shift of thermokarst lakes from carbon sources to sinks during the holocene epoch. Nature 511, 452–456 (2014).

    Google Scholar 

  18. 18.

    Walter Anthony, K. M. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).

    Google Scholar 

  19. 19.

    Schneider von Deimling, T. et al. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences 12, 3469–3488 (2015).

    Google Scholar 

  20. 20.

    Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019).

    Google Scholar 

  21. 21.

    Houghton, R. A. et al. Changes in the carbon content of terrestrial biota and soils between 1860–1980. Ecol. Monogr. 53, 235–262 (1983).

    Google Scholar 

  22. 22.

    Treat, C. C. et al. Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils. J. Geophys. Res. 121, 78–94 (2016).

    Google Scholar 

  23. 23.

    Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329 (2019).

    Google Scholar 

  24. 24.

    Jones, M. K. W., Pollard, W. H. & Jones, B. M. Rapid initialization of retrogressive thaw slumps in the Canadian High Arctic and their response to climate and terrain factors. Environ. Res Lett. 14, 055006 (2019).

    Google Scholar 

  25. 25.

    Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).

    Google Scholar 

  26. 26.

    Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change 6, 950–953 (2016).

    Google Scholar 

  27. 27.

    Serikova, S. et al. High riverine CO2 emissions at the permafrost boundary of western Siberia. Nat. Geosci. 11, 825–829 (2018).

    Google Scholar 

  28. 28.

    Vonk, J. E. et al. High biolability of ancient permafrost carbon upon thaw. Geophys. Res. Lett. 40, 2689–2693 (2013).

    Google Scholar 

  29. 29.

    Sannel, A. B. K. & Kuhry, P. Warming-induced destabilization of peat plateau/thermokarst lake complexes. J. Geophys. Res. 116, G03035 (2011).

    Google Scholar 

  30. 30.

    Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Clim. Change 119, 359–374 (2013).

    Google Scholar 

  31. 31.

    Kleinen, T. & Brovkin, V. Pathway-dependent fate of permafrost region carbon. Environ. Res. Lett. 13, 094001 (2018).

    Google Scholar 

  32. 32.

    Rogelj, J. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 93–174 (WMO, 2018).

  33. 33.

    Balser, A. W., Jones, J. B. & Gens, R. Timing of retrogressive thaw slump initiation in the Noatak Basin, northwest Alaska, USA. J. Geophys. Res. 119, 1106–1120 (2014).

    Google Scholar 

  34. 34.

    Loranty, M. M. et al. Reviews and syntheses: changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, 5287–5313 (2018).

    Google Scholar 

  35. 35.

    Baltzer, J. L., Veness, T., Chasmer, L. E., Sniderhan, A. E. & Quinton, W. L. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob. Change Biol. 20, 824–834 (2014).

    Google Scholar 

  36. 36.

    Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45, 371–374 (2017).

    Google Scholar 

  37. 37.

    Walter Anthony, K. M. et al. Methane emissions proportional to permafrost carbon thawed in arctic lakes since the 1950s. Nat. Geosci. 9, 679–682 (2016).

    Google Scholar 

  38. 38.

    Petrenko, V. et al. Minimal geological methane emissions during the younger dryas–preboreal abrupt warming event. Nature 548, 443–446 (2017).

    Google Scholar 

  39. 39.

    Beck, J. et al. Bipolar carbon and hydrogen isotope constraints on the Holocene methane budget. Biogeosciences 15, 7155–7175 (2018).

    Google Scholar 

  40. 40.

    Kruse, S. et al. Dispersal distances and migration rates at the arctic treeline in Siberia—a genetic and simulation-based study. Biogeosciences 16, 1211–1224 (2019).

    Google Scholar 

  41. 41.

    Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9, 5423 (2018).

    Google Scholar 

  42. 42.

    Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R. & Bowden, W. B. Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences 12, 3725–3740 (2015).

    Google Scholar 

  43. 43.

    Tanski, G. et al. Transformation of terrestrial organic matter along thermokarst-affected permafrost coasts in the Arctic. Sci. Total Environ. 581–582, 434–447 (2017).

    Google Scholar 

  44. 44.

    Estop-Aragones, C. et al. Respiration of aged soil carbon during fall in permafrost peatlands enhanced by active layer deepening following wildfire but limited following thermokarst. Environ. Res. Lett. 13, 085002 (2018).

    Google Scholar 

  45. 45.

    O’Donnell, J. A. et al. The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland. Ecosystems 15, 213–229 (2012).

    Google Scholar 

  46. 46.

    Jones, M. C. et al. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Glob. Change Biol. 23, 1109–1127 (2017).

    Google Scholar 

  47. 47.

    Soetaert, K. & Petzoldt, T. Inverse modeling, sensitivity, and Monte Carlo analysis in R using package FME. J. Stat. Softw. (2010)..

  48. 48.

    Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 659–740 (Cambridge Univ. Press, 2013).

  49. 49.

    Frolking, S. & Roulet, N. T. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Glob. Change Biol. 13, 1079–1088 (2007).

    Google Scholar 

  50. 50.

    Frolking, S., Roulet, N. & Fuglestvedt, J. How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. J. Geophys. Res. 111, G01008 (2006).

    Google Scholar 

Download references


S. Frolking provided guidance on the radiative forcing calculations. M. Strimas-Mackey and A. McAdam provided assistance with the R coding. T. Douglas provided constructive feedback on the manuscript. This work is a product of the Permafrost Carbon Network and SEARCH Permafrost Action Team. We acknowledge support from NSERC (to M.R.T.), the PETA-CARB project (ERC number 338335) and BMBF KoPf project (to G.G.), and NSF ARCSS 1500931 and NASA ABoVE (to K.W.A.).

Author information




M.R.T. and A.D.M. conceived of the study. B.W.A., M.C.J., K.W.A. and M.R.T. led the development of each abrupt thaw conceptual model. G.G. and C.G. participated in remote sensing analysis and synthesis. M.R.T., G.G. and K.W.A. led the synthesis of thaw lake data. M.R.T., M.C.J., D.O. and A.B.K.S. led the synthesis of permafrost peatland data. G.G. led the synthesis of head wall retreat rates. B.W.A. and E.A.G.S. led the synthesis of hillslope data. M.R.T. performed the simulations and wrote the paper. All authors commented on the analysis, interpretation and presentation of the data and were involved with the writing.

Corresponding author

Correspondence to Merritt R. Turetsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editors: Xujia Jiang; Heike Langenberg.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Tables 1–6 and Figs. 1–8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Turetsky, M.R., Abbott, B.W., Jones, M.C. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

Download citation

Further reading


Quick links