Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Manifestations and mechanisms of the Karakoram glacier Anomaly

Abstract

Global-scale glacier shrinkage is one of the most prominent signs of ongoing climatic change. However, important differences in glacier response exist at the regional scale, and evidence has accumulated that one particular region stands out: the Karakoram. In the past two decades, the region has shown balanced to slightly positive glacier budgets, an increase in glacier ice flow speeds, stable to partially advancing glacier termini and widespread glacier surge activity. This is in stark contrast to the rest of High Mountain Asia, where glacier retreat and slowdown dominate, and glacier surging is largely absent. Termed the Karakoram Anomaly, recent observations show that the anomalous glacier behaviour partially extends to the nearby Western Kun Lun and Pamir. Several complementary explanations have now been presented for the Anomaly’s deeper causes, but our understanding is far from complete. Whether the Anomaly will continue to exist in the coming decades remains unclear, but its long-term persistence seems unlikely in light of the considerable warming anticipated by current projections of future climate.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Distribution of Karakoram glaciers and climate characteristics.

Base map from Esri, USGS, NOAA and glacier data from ref. 2 (a); reproduced with permission from ref. 101, John Wiley and Sons (b); Google Earth (c); courtesy of Rina Saeed Khan (d)

Fig. 2: Recent glacier changes in High Mountain Asia.
Fig. 3: Potential meteoclimatic drivers of the Karakoram Anomaly.
Fig. 4: Schematic of the process chain leading to anomalous glacier evolution.

Data availability

The data shown in the individual figures are available in the publications cited.

Code availability

The code used to produce Figs. 2 and 3 is available from the corresponding author on request.

References

  1. 1.

    Hewitt, K. Rock avalanches that travel onto glaciers and related developments, Karakoram Himalaya, Inner Asia. Geomorphology 103, 66–79 (2009).

    Google Scholar 

  2. 2.

    RGI Consortium. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6. 0 (Global Land Ice Measurements from Space, 2017); https://doi.org/10.7265/N5-RGI-60

  3. 3.

    Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).

    Google Scholar 

  4. 4.

    Armstrong, R. L. et al. Runoff from glacier ice and seasonal snow in High Asia: separating melt water sources in river flow. Reg. Environ. Change 19, 1249–1261 (2019).

    Google Scholar 

  5. 5.

    Akhtar, M., Ahmad, N. & Booij, M. J. The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. J. Hydrol. 355, 148–163 (2008).

    Google Scholar 

  6. 6.

    Immerzeel, W., van Beek, L. & Bierkens, M. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).

    Google Scholar 

  7. 7.

    Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

    Google Scholar 

  8. 8.

    Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).

    Google Scholar 

  9. 9.

    Schlagintweit, H., Schlagintweit, A. & Schlagintweit, R. Results of a Scientific Mission to India and High Asia Undertaken Between the Years 1854 and 1858 (Trubner, 1861).

  10. 10.

    Godwin-Austen, H. H. The glaciers of the Muztagh Range. Proc. R. Geogr. Soc. 34, 19–56 (1864).

    Google Scholar 

  11. 11.

    Shaw, R. Visits to High Tartary, Yarkand, and Kashghar: Formerly Chinese Tartary (John Murray, 1871).

  12. 12.

    Hayden, H. H. Notes on certain glaciers in Northwest Kashmir. Rec. Geol. Surv. India 35, 127–137 (1907).

    Google Scholar 

  13. 13.

    Zemp, M. et al. Global glacier mass balances and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019).

    Google Scholar 

  14. 14.

    Berthier, E. & Brun, F. Karakoram glacier mass balances between 2008 and 2016: persistence of the anomaly and influence of a large rock avalanche on Siachen Glacier. J. Glaciol. 65, 494–507 (2019).

    Google Scholar 

  15. 15.

    Dehecq, A. et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 12, 22–27 (2019).

    Google Scholar 

  16. 16.

    Quincey, D. J., Glasser, N. F., Cook, S. J. & Luckman, A. Heterogeneity in Karakoram glacier surges. J. Geophys. Res. Earth Surf. 120, 1288–1300 (2015).

    Google Scholar 

  17. 17.

    Meier, M. F. & Post, A. What are glacier surges? Can. J. Earth Sci. 6, 807–817 (1969).

    Google Scholar 

  18. 18.

    Sevestre, H. & Benn, D. Climatic and geometric controls on the global distribution of surge-type glaciers: implications for a unifying model of surging. J. Glaciol. 61, 646–662 (2015).

    Google Scholar 

  19. 19.

    Mason, K. The Glaciers of the Karakoram and Neighbourhood (Geological Survey of India, 1930).

  20. 20.

    Copland, L. et al. Expanded and recently increased glacier surging in the Karakoram. Arct. Antarct. Alp. Res. 43, 503–516 (2011).

    Google Scholar 

  21. 21.

    Hewitt, K. The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya. Mt. Res. Dev. 25, 332–340 (2005).

    Google Scholar 

  22. 22.

    Gardelle, J., Berthier, E. & Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 5, 322–325 (2012).

    Google Scholar 

  23. 23.

    Kääb, A., Berthier, E., Nuth, C., Gardelle, J. & Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488, 495–498 (2012).

    Google Scholar 

  24. 24.

    Gardelle, J., Berthier, E., Arnaud, Y. & Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 7, 1263–1286 (2013).

    Google Scholar 

  25. 25.

    Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

    Google Scholar 

  26. 26.

    Kääb, A., Treichler, D., Nuth, C. & Berthier, E. Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir-Karakoram-Himalaya. Cryosphere 9, 557–564 (2015).

    Google Scholar 

  27. 27.

    Azam, M. F. et al. Review of the status and mass changes of Himalayan-Karakoram glaciers. J. Glaciol. 64, 61–74 (2018).

    Google Scholar 

  28. 28.

    Brun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10, 668–673 (2017).

    Google Scholar 

  29. 29.

    Brun, F. et al. Heterogeneous influence of glacier morphology on the mass balance variability in High Mountain Asia. J. Geophys. Res. Earth Surf. 124, 1331–1345 (2019).

    Google Scholar 

  30. 30.

    Scherler, D. & Strecker, M. R. Large surface velocity fluctuations of Biafo Glacier, central Karakoram, at high spatial and temporal resolution from optical satellite images. J. Glaciol. 58, 569–580 (2012).

    Google Scholar 

  31. 31.

    Lv, M. et al. Characterizing the behaviour of surge- and non-surge-type glaciers in the Kingata Mountains, eastern Pamir, from 1999 to 2016. Cryosphere 13, 219–236 (2019).

    Google Scholar 

  32. 32.

    Heid, T. & Kääb, A. Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. Cryosphere 6, 467–478 (2012).

    Google Scholar 

  33. 33.

    Scherler, D., Bookhagen, B. & Strecker, M. R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 4, 156–159 (2011).

    Google Scholar 

  34. 34.

    Rankl, M., Kienholz, C. & Braun, M. Glacier changes in the Karakoram region mapped by multimission satellite imagery. Cryosphere 8, 977–989 (2014).

    Google Scholar 

  35. 35.

    Minora, U. et al. Glacier area stability in the Central Karakoram National Park (Pakistan) in 2001–2010: the “Karakoram Anomaly” in the spotlight. Progr. Phys. Geogr. Earth Environ. 40, 629–660 (2016).

    Google Scholar 

  36. 36.

    Bolch, T. et al. The state and fate of Himalayan Glaciers. Science 336, 310–314 (2012).

    Google Scholar 

  37. 37.

    Cogley, J. G. Glacier shrinkage across High Mountain Asia. Ann. Glaciol. 57, 41–49 (2016).

    Google Scholar 

  38. 38.

    Herreid, S. et al. Satellite observations show no net change in the percentage of supraglacial debris-covered area in northern Pakistan from 1977 to 2014. J. Glaciol. 61, 524–536 (2015).

    Google Scholar 

  39. 39.

    Goerlich, F. & Paul, F. Surging glaciers everywhere? An updated inventory of surging glaciers for the Pamir Mountains derived from the analysis of multi-temporal optical satellite data. In EGU General Assembly Conference Abstracts Vol. 21, 5747-2 (EGU, 2019).

  40. 40.

    Chudley, T. R. & Willis, I. C. Glacier surges in the north-west West Kunlun Shan inferred from 1972 to 2017 Landsat imagery. J. Glaciol. 65, 1–12 (2019).

    Google Scholar 

  41. 41.

    Bhambri, R., Hewitt, K., Kawishwar, P. & Pratap, B. Surge-type and surge-modified glaciers in the Karakoram. Sci. Rep. 7, 15391 (2017).

    Google Scholar 

  42. 42.

    Mayewski, P. A. & Jeschke, P. A. Himalayan and Trans-Himalayan glacier fluctuations since AD 1812. Arct. Alp. Res. 11, 267–287 (1979).

    Google Scholar 

  43. 43.

    Hewitt, K. Glacier change, concentration, and elevation effects in the Karakoram Himalaya, upper Indus basin. Mt. Res. Dev. 31, 188–200 (2011).

    Google Scholar 

  44. 44.

    Bhutiyani, M. R. Mass-balance studies on Siachen glacier in the Nubra valley, Karakoram Himalaya, India. J. Glaciol. 45, 112–118 (1999).

    Google Scholar 

  45. 45.

    Zaman, Q. & Liu, J. Mass balance of Siachen Glacier, Nubra valley, Karakoram Himalaya: facts or flaws? J. Glaciol. 61, 1012–1014 (2015).

    Google Scholar 

  46. 46.

    Zhou, Y., Li, Z., Li, J., Zhao, R. & Ding, X. Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM. J. Glaciol. 63, 331–342 (2017).

    Google Scholar 

  47. 47.

    Bolch, T., Pieczonka, T., Mukherjee, K. & Shea, J. Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. Cryosphere 11, 531–539 (2017).

    Google Scholar 

  48. 48.

    Zhou, Y., Li, Z., Li, J., Zhao, R. & Ding, X. Glacier mass balance in the Qinghai-Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sens. Environ. 210, 96–112 (2018).

    Google Scholar 

  49. 49.

    Wang, Y. et al. Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s. J. Glaciol. 64, 624–636 (2018).

    Google Scholar 

  50. 50.

    Holzer, N. et al. Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pleiades data. Cryosphere 9, 2071–2088 (2015).

    Google Scholar 

  51. 51.

    Zhou, Y., Li, Z., Li, J., Zhao, R. & Ding, X. Geodetic glacier mass balance (1975–1999) in the central Pamir using the SRTM DEM and KH-9 imagery. J. Glaciol. 65, 309–320 (2019).

    Google Scholar 

  52. 52.

    von Wissmann, H. & Flohn, H. Today’s Glacierization and Snow Line in High Asia, with Hints on the Glaciation During the Last Ice Age (in German) Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse No. 14 (Akademie der Wissenschaften und der Literatur, 1960).

  53. 53.

    Kick, W. in Glacier Fluctuations and Climate Change (ed. Oerlemans, J.) 129–142 (Kluwer, 1989).

  54. 54.

    Archer, D. R. & Fowler, H. J. Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci. 8, 47–61 (2004).

    Google Scholar 

  55. 55.

    Fowler, H. J. & Archer, D. R. Conflicting signals of climatic change in the upper Indus basin. J. Clim. 19, 4276–4293 (2006).

    Google Scholar 

  56. 56.

    Yadav, R. R., Park, W.-K., Singh, J. & Dubey, B. Do the western Himalayas defy global warming? Geophys. Res. Lett. 31, L17201 (2004).

    Google Scholar 

  57. 57.

    Treydte, K. S. et al. The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440, 1179–1182 (2006).

    Google Scholar 

  58. 58.

    Quincey, D. J. et al. Ice velocity and climate variations for Baltoro Glacier, Pakistan. J. Glaciol. 55, 1061–1071 (2009).

    Google Scholar 

  59. 59.

    Quincey, D. J. et al. Karakoram glacier surge dynamic. Geophys. Res. Lett. 38, L18504 (2011).

    Google Scholar 

  60. 60.

    Archer, C. L. & Caldeira, K. Historical trends in the jet streams. Geophys. Res. Lett. 35, L08803 (2008).

    Google Scholar 

  61. 61.

    Finsterwalder, R. The glaciers of Nanga Parbat, glaciological works of the German Himalaya-expedition and their results (in German). Z. Gletsch. Glazialgeol. 25, 57–107 (1937).

    Google Scholar 

  62. 62.

    Batura Glacier Investigation Group. The Batura Glacier in the Karakoram mountains and its variations. Sci. Sin. 22, 958–974 (1979).

    Google Scholar 

  63. 63.

    Hewitt, K., Wake, C. P., Young, G. J. & David, C. Hydrological investigations at Biafo Glacier, Karakoram Range, Himalaya; an important source of water for the Indus River. Ann. Glaciol. 13, 103–108 (1989).

    Google Scholar 

  64. 64.

    Gardner, J. S. & Hewitt, K. A surge of Bualtar Glacier, Karakoram Range, Pakistan: a possible landslide trigger. J. Glaciol. 36, 159–162 (1990).

    Google Scholar 

  65. 65.

    Wake, C. P. & Searle, M. P. Rapid advance of Pumarikish Glacier, Hispar Glacier Basin, Karakoram Himalaya. J. Glaciol. 39, 204–206 (1993).

    Google Scholar 

  66. 66.

    Mayer, C., Lambrecht, A., Beló, M., Smiraglia, C. & Diolaiuti, G. Glaciological characteristics of the ablation zone of Baltoro glacier, Karakoram, Pakistan. Ann. Glaciol. 43, 123–131 (2006).

    Google Scholar 

  67. 67.

    Copland, L. et al. Glacier velocities across the central Karakoram. Ann. Glaciol. 50, 41–49 (2009).

    Google Scholar 

  68. 68.

    Hewitt, K. Tributary glacier surges: an exceptional concentration at Panmah Glacier, Karakoram Himalaya. J. Glaciol. 53, 181–188 (2007).

    Google Scholar 

  69. 69.

    Kapnick, S. B., Delworth, T. L., Ashfaq, M., Malyshev, S. & Milly, P. C. D. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat. Geosci. 7, 834–840 (2014).

    Google Scholar 

  70. 70.

    Forsythe, N., Fowler, H. J., Li, X.-F., Blenkinsop, S. & Pritchard, D. Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Clim. Change 7, 664–670 (2017).

    Google Scholar 

  71. 71.

    Li, X.-F., Fowler, H. J., Forsythe, N., Blenkinsop, S. & Pritchard, D. The Karakoram/Western Tibetan vortex: seasonal and year-to-year variability. Clim. Dynam. 51, 3883–3906 (2018).

    Google Scholar 

  72. 72.

    Maussion, F. et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J. Clim. 27, 1910–1927 (2013).

    Google Scholar 

  73. 73.

    Curio, J., Maussion, F. & Scherer, D. A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Syst. Dynam. 6, 109–124 (2015).

    Google Scholar 

  74. 74.

    Cannon, F., Carvalho, L. M. V., Jones, C. & Norris, J. Winter westerly disturbance dynamics and precipitation in the western Himalaya and Karakoram: a wave-tracking approach. Theor. Appl. Climatol. 125, 27–44 (2016).

    Google Scholar 

  75. 75.

    Cannon, F., Carvalho, L. M. V., Jones, C. & Bookhagen, B. Multi-annual variations in winter westerly disturbance activity affecting the Himalaya. Clim. Dynam. 44, 441–455 (2015).

    Google Scholar 

  76. 76.

    Norris, J., Carvalho, L. M. V., Jones, C. & Cannon, F. Deciphering the contrasting climatic trends between the central Himalaya and Karakoram with 36 years of WRF simulations. Clim. Dynam. 52, 159–180 (2019).

    Google Scholar 

  77. 77.

    Mölg, T., Maussion, F. & Scherer, D. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat. Clim. Change 4, 68–73 (2014).

    Google Scholar 

  78. 78.

    Palazzi, E., von Hardenberg, J. & Provenzale, A. Precipitation in the Hindu-Kush Karakoram Himalaya: observations and future scenarios. J. Geophys. Res. Atmos. 118, 85–100 (2013).

    Google Scholar 

  79. 79.

    Hasson, S., Böhner, J. & Lucarini, V. Prevailing climatic trends and runoff response from Hindukush-Karakoram-Himalaya, upper Indus Basin. Earth Syst. Dynam. 8, 337–355 (2017).

    Google Scholar 

  80. 80.

    Asad, F. et al. Are Karakoram temperatures out of phase compared to hemispheric trends? Clim. Dynam. 48, 3381–3390 (2017).

    Google Scholar 

  81. 81.

    de Kok, R. J., Tuinenburg, O. A., Bonekamp, P. N. J. & Immerzeel, W. W. Irrigation as a potential driver for anomalous glacier behavior in High Mountain Asia. Geophys. Res. Lett. 45, 2047–2054 (2018).

    Google Scholar 

  82. 82.

    Cook, B. I., Shukla, S. P., Puma, M. J. & Nazarenko, L. S. Irrigation as an historical climate forcing. Clim. Dynam. 44, 1715–1730 (2015).

    Google Scholar 

  83. 83.

    Bashir, F., Zeng, X., Gupta, H. & Hazenberg, P. A hydrometeorological perspective on the Karakoram anomaly using unique valley-based synoptic weather observations. Geophys. Res. Lett. 44, 10470–10478 (2017).

    Google Scholar 

  84. 84.

    Lee, E., Sacks, W. J., Chase, T. N. & Foley, J. A. Simulated impacts of irrigation on the atmospheric circulation over Asia. J. Geophys. Res. Atmos. 116, D08114 (2011).

    Google Scholar 

  85. 85.

    Singh, D. et al. Distinct influences of land cover and land management on seasonal climate. J. Geophys. Res. Atmos. 123, 12017–12039 (2018).

    Google Scholar 

  86. 86.

    Wang, R., Liu, S., Shangguan, D., Radić, V. & Zhang, Y. Spatial heterogeneity in glacier mass-balance sensitivity across High Mountain Asia. Water 11, 776 (2019).

    Google Scholar 

  87. 87.

    Sakai, A. & Fujita, K. Contrasting glacier responses to recent climate change in high-mountain Asia. Sci. Rep. 7, 13717 (2017).

    Google Scholar 

  88. 88.

    Untersteiner, N. Glacial-meteorological analyses in the Karakoram (in German with English abstract). Arch. Meteorol. Geophys. Bioklimatol. Ser. B 8, 1–30 (1957).

    Google Scholar 

  89. 89.

    Mihalcea, C. et al. Ice ablation and meteorological conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan. Ann. Glaciol. 43, 292–300 (2006).

    Google Scholar 

  90. 90.

    Bonekamp, P. N., de Kok, R. J., Collier, E. & Immerzel, W. W. Contrasting meteorological drivers of the glacier mass balance between the Karakoram and central Himalaya. Front. Earth Sci. 7, 107 (2019).

    Google Scholar 

  91. 91.

    Hewitt, K. Glaciers of the Karakoram Himalaya (Springer, 2014).

  92. 92.

    ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate (Copernicus Climate Change Service, 2017); https://cds.climate.copernicus.eu/cdsapp#!/home

  93. 93.

    Shea, J. M., Immerzeel, W. W., Wagnon, P., Vincent, C. & Bajracharya, S. Modelling glacier change in the Everest region, Nepal Himalaya. Cryosphere 9, 1105–1128 (2015).

    Google Scholar 

  94. 94.

    Benn, D. I., Fowler, A. C., Hewitt, I. & Sevestre, H. A general theory of glacier surges. J. Glaciol. 65, 701–716 (2019).

    Google Scholar 

  95. 95.

    Kääb, A. et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat. Geosci. 11, 114–120 (2018).

    Google Scholar 

  96. 96.

    Gilbert, A. et al. Mechanisms leading to the 2016 giant twin glacier collapses, Aru Range, Tibet. Cryosphere 12, 2883–2900 (2018).

    Google Scholar 

  97. 97.

    Dimri, A. P., Kumar, D., Choudhary, A. & Maharana, P. Future changes over the Himalayas: mean temperature. Glob. Planet. Change 162, 235–251 (2018).

    Google Scholar 

  98. 98.

    Kraaijenbrink, P., Lutz, A., Bierkens, M. & Immerzeel, W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 549, 257–260 (2017).

    Google Scholar 

  99. 99.

    Quincey, D. et al. The changing water cycle: the need for an integrated assessment of the resilience to changes in water supply in High-Mountain Asia. WIREs Water 5, e1258 (2018).

    Google Scholar 

  100. 100.

    Dee, D. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Google Scholar 

  101. 101.

    Kumar, P. et al. Response of Karakoram-Himalayan glaciers to climate variability and climatic change: a regional climate model assessment. Geophys. Res. Lett. 42, 1818–1825 (2015).

    Google Scholar 

  102. 102.

    Benn, D. I. et al. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth Sci. Rev. 114, 156–174 (2012).

    Google Scholar 

  103. 103.

    Anderson, L. S. & Anderson, R. S. Modeling debris-covered glaciers: response to steady debris deposition. Cryosphere 10, 1105–1124 (2016).

    Google Scholar 

  104. 104.

    Harrison, W. D. & Post, A. S. How much do we really know about glacier surging? Ann. Glaciol. 36, 1–6 (2003).

    Google Scholar 

Download references

Acknowledgements

We thank F. Brun for providing the data underlying Fig. 2 and Supplementary Fig. 1, and J. Norris for providing the data for Supplementary Fig. 3.

Author information

Affiliations

Authors

Contributions

D.F. initiated the study, designed the figures and led the writing, to which all authors contributed. W.W.I. and D.Q. provided materials for Fig. 1 and Box 1. A.D. provided materials for Figs. 1 and 2. The analyses shown in Fig. 3 and Supplementary Figs. 2 and 3 were performed by R.d.K. R.d.K. and W.W.I. conceived Fig. 4, with additions from A.D., D.F. and D.Q.

Corresponding author

Correspondence to Daniel Farinotti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Heike Langenberg.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farinotti, D., Immerzeel, W.W., de Kok, R.J. et al. Manifestations and mechanisms of the Karakoram glacier Anomaly. Nat. Geosci. 13, 8–16 (2020). https://doi.org/10.1038/s41561-019-0513-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing