Global ocean heat content in the Last Interglacial

Abstract

The Last Interglacial (129–116 thousand years ago (ka)) represents one of the warmest climate intervals of the past 800,000 years and the most recent time when sea level was metres higher than today. However, the timing and magnitude of the peak warmth varies between reconstructions, and the relative importance of individual sources that contribute to the elevated sea level (mass gain versus seawater expansion) during the Last Interglacial remains uncertain. Here we present the first mean ocean temperature record for this interval from noble gas measurements in ice cores and constrain the thermal expansion contribution to sea level. Mean ocean temperature reached its maximum value of 1.1 ± 0.3 °C warmer-than-modern values at the end of the penultimate deglaciation at 129 ka, which resulted in 0.7 ± 0.3 m of thermosteric sea-level rise relative to present level. However, this maximum in ocean heat content was a transient feature; mean ocean temperature decreased in the first several thousand years of the interglacial and achieved a stable, comparable-to-modern value by ~127 ka. The synchroneity of the peak in mean ocean temperature with proxy records of abrupt transitions in the oceanic and atmospheric circulation suggests that the mean ocean temperature maximum is related to the accumulation of heat in the ocean interior during the preceding period of reduced overturning circulation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: MOT anomaly from Kr/N2, Xe/N2 and Xe/Kr.
Fig. 2: Surface and MOT anomalies during the LIG.
Fig. 3: Climate records of Terminations II and I.

Data availability

The presented data are available online at www.usap-dc.org/view/dataset/601218.

Change history

  • 07 February 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  2. 2.

    Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    Article  Google Scholar 

  3. 3.

    Snyder, C. W. Evolution of global temperature over the past two million years. Nature 538, 226–228 (2016).

    Article  Google Scholar 

  4. 4.

    Hoffman, J. S., Parnell, A. C. & He, F. Regional and global sea-surface temperatures during the last interglaciation. Science 279, 276–279 (2017).

    Article  Google Scholar 

  5. 5.

    Otto-Bliesner, B. L. et al. How warm was the Last Interglacial? New model—data comparisons. Philos. Trans. R. Soc. A 371, 20130097 (2013).

    Article  Google Scholar 

  6. 6.

    Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C. & Oppenheimer, M. Probabilistic assessment of sea level during the Last Interglacial stage. Nature 462, 863–867 (2009).

    Article  Google Scholar 

  7. 7.

    Masson-Delmotte, V. et al. Sensitivity of interglacial Greenland temperature and δ18O: ice core data, orbital and increased CO2 climate simulations. Clim. Past 7, 1041–1059 (2011).

    Article  Google Scholar 

  8. 8.

    Fischer, H. et al. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nat. Geosci. 11, 475–485 (2018).

    Google Scholar 

  9. 9.

    Capron, E. et al. Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial. Quat. Sci. Rev. 103, 116–133 (2014).

    Article  Google Scholar 

  10. 10.

    Deaney, E., Barker, S. & van de Flierdt, T. Timing and nature of AMOC recovery across Termination 2 and magnitude of deglacial CO2 change. Nat. Commun. 8, 14595 (2017).

    Article  Google Scholar 

  11. 11.

    Shakun, J. D., Lea, D. W., Lisiecki, L. E. & Raymo, M. E. An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling. Earth Planet. Sci. Lett. 426, 58–68 (2015).

    Article  Google Scholar 

  12. 12.

    Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Severinghaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39–44 (2018).

    Article  Google Scholar 

  13. 13.

    Headly, M. A. & Severinghaus, J. P. A method to measure Kr/N2 ratios in air bubbles trapped in ice cores and its application in reconstructing past mean ocean temperature. J. Geophys. Res. 112, D19105 (2007).

    Article  Google Scholar 

  14. 14.

    Ritz, S. P., Stocker, T. F. & Severinghaus, J. P. Noble gases as proxies of mean ocean temperature: sensitivity studies using a climate model of reduced complexity. Quat. Sci. Rev. 30, 3728–3741 (2011).

    Article  Google Scholar 

  15. 15.

    Baggenstos, D. et al. The Earth’s radiative imbalance from the Last Glacial Maximum to the present. Proc. Natl Acad. Sci. USA 116, 14881–14886 (2019).

    Article  Google Scholar 

  16. 16.

    Gebbie, G. & Huybers, P. The Little Ice Age and 20th-century deep Pacific cooling. Science 363, 70–74 (2019).

    Article  Google Scholar 

  17. 17.

    Bazin, L. et al. An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Clim. Past 9, 1715–1731 (2013).

    Article  Google Scholar 

  18. 18.

    Barker, S. et al. 800,000 years of abrupt climate variability. Science 334, 347–352 (2011).

    Article  Google Scholar 

  19. 19.

    Capron, E., Govin, A., Feng, R., Otto-Bliesner, B. L. & Wolff, E. W. Critical evaluation of climate syntheses to benchmark CMIP6/PMIP4 127 ka Last Interglacial simulations in the high-latitude regions. Quat. Sci. Rev. 168, 137–150 (2017).

    Article  Google Scholar 

  20. 20.

    Gebbie, G. & Huybers, P. How is the ocean filled? Geophys. Res. Lett. 38, L06604 (2011).

    Article  Google Scholar 

  21. 21.

    Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

    Article  Google Scholar 

  22. 22.

    Parrenin, F. et al. On the gas–ice depth difference (∆ depth) along the EPICA Dome C ice core. Clim. Past 8, 1239–1255 (2012).

    Article  Google Scholar 

  23. 23.

    Marino, G. et al. Bipolar seesaw control on Last Interglacial sea level. Nature 522, 197–201 (2015).

    Article  Google Scholar 

  24. 24.

    Cheng, H. et al. Ice Age terminations. Science 326, 248–252 (2009).

    Article  Google Scholar 

  25. 25.

    Pedro, J. B. et al. Beyond the bipolar seesaw: toward a process understanding of interhemispheric coupling. Quat. Sci. Rev. 192, 27–46 (2018).

    Article  Google Scholar 

  26. 26.

    Menviel, L. et al. The penultimate deglaciation: protocol for Paleoclimate Modelling Intercomparison Project (PMIP) phase 4 transient numerical simulations between 140 and 127 ka, version 1.0. Geosci. Model Dev. Discuss. 10, 3649–3685 (2019).

    Article  Google Scholar 

  27. 27.

    Masson-Delmotte, V. et al. Abrupt change of Antarctic moisture origin at the end of Termination II. Proc. Natl Acad. Sci. USA 107, 10–13 (2010).

    Article  Google Scholar 

  28. 28.

    Loulergue, L. et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, 383–386 (2008).

    Article  Google Scholar 

  29. 29.

    Galbraith, E. D., Merlis, T. M. & Palter, J. B. Destabilization of glacial climate by the radiative impact of Atlantic meridional overturning circulation disruptions. Geophys. Res. Lett. 43, 8214–8221 (2016).

    Article  Google Scholar 

  30. 30.

    Barker, S. et al. Early interglacial legacy of deglacial climate instability. Paleoceanogr. Paleoclimatol. 34, 1455–1475 (2019).

    Article  Google Scholar 

  31. 31.

    Carlson, A. E. Why there was not a Younger Dryas-like event during the penultimate deglaciation. Quat. Sci. Rev. 27, 882–887 (2008).

    Article  Google Scholar 

  32. 32.

    Shackleton, S. et al. Is the noble gas-based rate of ocean warming during the younger dryas overestimated? Geophys. Res. Lett. 46, 5928–5936 (2019).

    Article  Google Scholar 

  33. 33.

    Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).

    Article  Google Scholar 

  34. 34.

    Toggweiler, J. R., Russell, J. L. & Carson, S. R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21, PA2005 (2006).

    Article  Google Scholar 

  35. 35.

    Marcott, S. A. et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl Acad. Sci. USA 108, 13415–13419 (2011).

    Article  Google Scholar 

  36. 36.

    Bassis, J., Petersen, S. & Mac Cathles, L. Heinrich events triggered by ocean forcing and modulated by isostatic adjustment. Nature 542, 332–334 (2017).

    Article  Google Scholar 

  37. 37.

    Kuhlbrodt, T. & Gregory, J. M. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett. 39, L18608 (2012).

    Article  Google Scholar 

  38. 38.

    Dutton, A., Webster, J. M., Zwartz, D. & Lambeck, K. Tropical tales of polar ice: evidence of Last Interglacial polar ice sheet retreat recorded by fossil reefs of the granitic Seychelles islands. Quat. Sci. Rev. 107, 182–196 (2015).

    Article  Google Scholar 

  39. 39.

    Pollard, D. & Deconto, R. M. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article  Google Scholar 

  40. 40.

    Sutter, J., Gierz, P., Grosfeld, K., Thoma, M. & Lohmann, G. Ocean temperature thresholds for Last Interglacial West Antarctic Ice Sheet collapse. Geophys. Res. Lett. 43, 2675–2682 (2016).

    Article  Google Scholar 

  41. 41.

    Elderfield, H. et al. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337, 704–709 (2012).

    Article  Google Scholar 

  42. 42.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  43. 43.

    Schneider, R., Schmitt, J., Köhler, P., Joos, F. & Fischer, H. A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception. Clim. Past 9, 2507–2523 (2013).

    Article  Google Scholar 

  44. 44.

    Wang, Y. et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, 1090–1093 (2008).

    Article  Google Scholar 

  45. 45.

    Grant, K. M. et al. Sea-level variability over five glacial cycles. Nat. Commun. 5, 5076 (2014).

    Article  Google Scholar 

  46. 46.

    Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).

    Article  Google Scholar 

  47. 47.

    Buizert, C. et al. Precise interpolar phasing of abrupt climate change during the last ice age. Nature 520, 661–665 (2015).

    Article  Google Scholar 

  48. 48.

    Buizert, C. et al. The WAIS-Divide deep ice core WD2014 chronology—part 1: methane synchronization (68–31 ka bp) and the gas age-ice age difference. Clim. Past 11, 153 (2015).

    Article  Google Scholar 

  49. 49.

    Dykoski, C. A. et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet. Sci. Lett. 233, 71–86 (2005).

    Article  Google Scholar 

  50. 50.

    Wang, Y. et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001).

    Article  Google Scholar 

  51. 51.

    Roberts, N. L., Piotrowski, A. M., McManus, J. F. & Keigwin, L. D. Synchronous deglacial overturning and water mass source changes. Science 327, 75–78 (2010).

    Article  Google Scholar 

  52. 52.

    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    Article  Google Scholar 

  53. 53.

    Baggenstos, D. et al. Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle. Clim. Past 13, 943–958 (2017).

    Article  Google Scholar 

  54. 54.

    Buizert, C. et al. Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica. Proc. Natl Acad. Sci. USA 111, 6876–6881 (2014).

    Article  Google Scholar 

  55. 55.

    Aarons, S. M., Aciego, S. M., McConnell, J. R., Delmonte, B. & Baccolo, G. Dust transport to the Taylor Glacier, Antarctica during the last interglacial. Geophys. Res. Lett. 46, 2261–2270 (2019).

    Article  Google Scholar 

  56. 56.

    Kuhl, T. W. et al. A new large-diameter ice-core drill: The Blue Ice Drill. Ann. Glaciol. 55, 1–6 (2014).

    Article  Google Scholar 

  57. 57.

    Bintanja, R. On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas. Rev. Geophys. 37, 337–359 (1999).

    Article  Google Scholar 

  58. 58.

    Aciego, S. M., Cuffey, K. M., Kavanaugh, J. L., Morse, D. L. & Severinghaus, J. P. Pleistocene ice and paleo-strain rates at Taylor Glacier, Antarctica. Quat. Res. 68, 303–313 (2007).

    Article  Google Scholar 

  59. 59.

    Kavanaugh, J. L. & Cuffey, K. M. Dynamics and mass balance of Taylor Glacier, Antarctica: 2. Force balance and longitudinal coupling. J. Geophys. Res. 114, F04011 (2009).

    Google Scholar 

  60. 60.

    Petrenko, V. V., Severinghaus, J. P., Brook, E. J., Reeh, N. & Schaefer, H. Gas records from the West Greenland ice margin covering the Last Glacial Termination: a horizontal ice core. Quat. Sci. Rev. 25, 865–875 (2006).

    Article  Google Scholar 

  61. 61.

    Bauska, T. K. et al. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl Acad. Sci. USA 113, 3465–3470 (2016).

    Article  Google Scholar 

  62. 62.

    Menking, J. A. et al. Spatial pattern of accumulation at Taylor Dome during Marine Isotope Stage 4: stratigraphic constraints from Taylor Glacier. Clim. Past 15, 1537–1556 (2019).

    Article  Google Scholar 

  63. 63.

    Blunier, T. et al. Synchronization of ice core records via atmospheric gases. Clim. Past 3, 325–330 (2007).

    Article  Google Scholar 

  64. 64.

    Landais, A. et al. Two-phase change in CO2, Antarctic temperature and global climate during Termination II. Nat. Geosci. 6, 1062–1065 (2013).

    Article  Google Scholar 

  65. 65.

    Veres, D. et al. The Antarctic ice core chronology (AICC2012): an optimized for the last 120 thousand years. Clim. Past 9, 1733–1748 (2013).

    Article  Google Scholar 

  66. 66.

    Bereiter, B., Kawamura, K. & Severinghaus, J. P. New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples. Rapid Commun. Mass Spectrom. 32, 801–814 (2018).

    Article  Google Scholar 

  67. 67.

    Severinghaus, J. P., Grachev, A., Luz, B. & Caillon, N. A method for precise measurement of argon 40/36 and krypton/argon ratios in trapped air in polar ice with applications to past firn thickness and abrupt climate change in Greenland and at Siple Dome, Antarctica. Geochim. Cosmochim. Acta 67, 325–343 (2003).

    Article  Google Scholar 

  68. 68.

    Severinghaus, J. P. & Battle, M. O. Fractionation of gases in polar ice during bubble close-off: new constraints from firn air Ne, Kr and Xe observations. Earth Planet. Sci. Lett. 244, 474–500 (2006).

    Article  Google Scholar 

  69. 69.

    Schwander, J., Stauffer, B. & Sigg, A. Air mixing in firn and the age of the air at pore close-off. Ann. Glaciol. 10, 141–145 (1988).

    Article  Google Scholar 

  70. 70.

    Schwander, J. in The Environmental Record in Glaciers and Ice Sheets (eds Oeschger, H. & Langway, C. C.) 53–67 (Wiley, 1989).

  71. 71.

    Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. & Bender, M. L. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146 (1998).

    Article  Google Scholar 

  72. 72.

    Hamme, R. C. & Severinghaus, J. P. Trace gas disequilibria during deep-water formation. Deep Sea Res. 54, 939–950 (2007).

    Article  Google Scholar 

  73. 73.

    Nilsson, J. et al. Ice-shelf damming in the glacial Arctic Ocean: dynamical regimes of a basin-covering kilometre-thick ice shelf. Cryosphere 11, 1745–1765 (2017).

    Article  Google Scholar 

  74. 74.

    Kolmogorov, A. N. Foundations of the Theory of Probability (Chelsea Publishing Co., 1950).

Download references

Acknowledgements

This research was supported by NSF grants 1246148 (SIO), 1245821 (OSU) and 1245659 (UR). We thank K. Schroeder, M. Jayred, P. Sperlich, I. Vimont, J. Ward, H. Roop, P. Neff and A. Smith for their invaluable field support for this project. Ice Drilling Design and Operations (IDDO) provided drilling support, and the US Antarctic Program provided logistical support for this project. Thanks to R. Beaudette for lab support at SIO, to M. Kalk for CO2 measurements at OSU and to M. Arienzo and N. Chellman for their heroic operation of the continuous melting system at DRI. The research at the University of Bern that led to these results received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Programme FP7/2007–2013 ERC Grant 226172 (ERC Advanced Grant Modern Approaches to Temperature Reconstructions in polar Ice Cores (MATRICs)) and the Swiss National Science Foundation (200020_172506 (iCEP), 200021_155906 (NOTICE)). The EDC samples were obtained under the framework of EPICA, a joint European Science Foundation/European Commission scientific program funded by the European Union and national contributions from Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Sweden, Switzerland and the United Kingdom. The main logistic support was provided by IPEV and PNRA at Dome C.

Author information

Affiliations

Authors

Contributions

J.P.S. and S.S. designed the research. S.S., M.H., D.B. and T.K. performed the noble gas measurements. J.A.M., E.J.B., R.H.R., J.R.M. and S.S. performed the trace gas field/lab measurements for the TG age model. S.S., D.B., J.A.M., M.N.D., B.B., T.K.B., R.H.R., E.J.B., V.V.P., M.J.R., T.K., M.H., J.S., H.F. and J.P.S. analysed the data. S.S. wrote the paper with input from all the authors.

Corresponding author

Correspondence to S. Shackleton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: James Super

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Supplementary Discussion and Supplementary Tables 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shackleton, S., Baggenstos, D., Menking, J.A. et al. Global ocean heat content in the Last Interglacial. Nat. Geosci. 13, 77–81 (2020). https://doi.org/10.1038/s41561-019-0498-0

Download citation