Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Recommended temperature metrics for carbon budget estimates, model evaluation and climate policy

Abstract

Recent estimates of the amount of carbon dioxide that can still be emitted while achieving the Paris Agreement temperature goals are larger than previously thought. One potential reason for these larger estimates may be the different temperature metrics used to estimate the observed global mean warming for the historical period, as they affect the size of the remaining carbon budget. Here we explain the reasons behind these remaining carbon budget increases, and discuss how methodological choices of the global mean temperature metric and the reference period influence estimates of the remaining carbon budget. We argue that the choice of the temperature metric should depend on the domain of application. For scientific estimates of total or remaining carbon budgets, globally averaged surface air temperature estimates should be used consistently for the past and the future. However, when used to inform the achievement of the Paris Agreement goal, a temperature metric consistent with the science that was underlying and directly informed the Paris Agreement should be applied. The resulting remaining carbon budgets should be calculated using the appropriate metric or adjusted to reflect these differences among temperature metrics. Transparency and understanding of the implications of such choices are crucial to providing useful information that can bridge the science–policy gap.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the effects of updating the baseline with respect to the cumulative CO2 emissions and temperature change.
Fig. 2: Contributions to differences in recent observed and modelled warming.
Fig. 3: Differences in ocean and sea ice coverage in CMIP5 models, and related differences between GBST and GSAT metrics, under different future emission scenarios.

Similar content being viewed by others

Data availability

The Cowtan and Way32 GBST datasets with different SST reconstructions are available at: https://www-users.york.ac.uk/~kdc3/papers/coverage2013/. The HadCRUT4.6 data is available at: https://www.metoffice.gov.uk/hadobs/hadcrut4/. GISTEMPv4 is available at: https://data.giss.nasa.gov/gistemp/. COBE-SST2 and ERSSTv5 data is provided by the NOAA/OAR/ESRL PSD via https://www.esrl.noaa.gov/psd/data/gridded/. ERA-Interim is available at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim. MERRA2 was downloaded from: https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/. CMIP5 and CMIP6 model output is available at: http://pcmdi9.llnl.gov/. CESM1 pacemaker experiments are available at: https://www.earthsystemgrid.org/.

References

  1. Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. USA 106, 16129–16134 (2009).

    Google Scholar 

  2. Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

    Google Scholar 

  3. Gillett, N. P., Arora, V. K., Matthews, D. & Allen, M. R. Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Clim. 26, 6844–6858 (2013).

    Google Scholar 

  4. IPCC: Technical Summary. In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 33–115 (Cambridge Univ. Press, 2013).

  5. MacDougall, A. H. The transient response to cumulative CO2 emissions: a review. Curr. Clim. Change Rep. 2, 39–47 (2016).

    Google Scholar 

  6. Gillett, N. P. & Matthews, H. D. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases. Environ. Res. Lett. 5, 034011 (2010).

    Google Scholar 

  7. Tokarska, K. B., Gillett, N. P., Arora, V. K., Lee, W. G. & Zickfeld, K. The influence of non-CO2 forcings on cumulative carbon emissions budgets. Environ. Res. Lett. 13, 034039 (2018).

    Google Scholar 

  8. Matthews, H. D. et al. Estimating carbon budgets for ambitious climate targets. Curr. Clim. Change Rep. 3, 69–77 (2017).

    Google Scholar 

  9. MacDougall, A. H., Zickfeld, K., Knutti, R. & Matthews, H. D. Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings. Environ. Res. Lett. 10, 125003 (2015).

    Google Scholar 

  10. Mengis, N., Partanen, A.-I., Jalbert, J. & Matthews, H. D. 1.5 °C carbon budget dependent on carbon cycle uncertainty and future non-CO2 forcing. Sci. Rep. 8, 5831 (2018).

    Google Scholar 

  11. Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Clim. 26, 5289–5314 (2013).

    Google Scholar 

  12. Arora, V. K. et al. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. 38, L05805 (2011).

    Google Scholar 

  13. Quéré, C. L. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).

    Google Scholar 

  14. Benestad, R. E., Erlandsen, H. B., Mezghani, A. & Parding, K. M. Geographical distribution of thermometers gives the appearance of lower historical global warming. Geophys. Res. Lett. 46, 7654–7662 (2019).

    Google Scholar 

  15. Cowtan, K. et al. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophys. Res. Lett. 42, 6526–6534 (2015).

    Google Scholar 

  16. Schurer, A. P. et al. Interpretations of the Paris climate target. Nat. Geosci. 11, 220–221 (2018).

    Google Scholar 

  17. Kosaka, Y. & Xie, S.-P. The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat. Geosci. 9, 4–6 (2016).

    Google Scholar 

  18. Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).

    Google Scholar 

  19. Tokarska, K. B. & Gillett, N. P. Cumulative carbon emissions budgets consistent with 1.5 °C global warming. Nat. Clim. Change 8, 296–299 (2018).

    Google Scholar 

  20. Goodwin, P. et al. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints. Nat. Geosci. 11, 102–107 (2018).

    Google Scholar 

  21. Rogelj, J. et al. in Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, 2018).

  22. Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).

  23. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).

  24. Rogelj, J., Forster, P. M., Kriegler, E., Smith, C. J. & Séférian, R. Estimating and tracking the remaining carbon budget for stringent climate targets. Nature 571, 335–342 (2019).

    Google Scholar 

  25. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

    Google Scholar 

  26. Richardson, M., Cowtan, K., Hawkins, E. & Stolpe, M. B. Reconciled climate response estimates from climate models and the energy budget of Earth. Nat. Clim. Change 6, 931–935 (2016).

    Google Scholar 

  27. Richardson, M., Cowtan, K. & Millar, R. J. Global temperature definition affects achievement of long-term climate goals. Environ. Res. Lett. 13, 054004 (2018).

    Google Scholar 

  28. Hawkins, E. et al. Estimating changes in global temperature since the preindustrial period. Bull. Am. Meteorol. Soc. 98, 1841–1856 (2017).

    Google Scholar 

  29. IPCC: Summary for Policymakers. In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  30. Pfleiderer, P., Schleussner, C.-F., Mengel, M. & Rogelj, J. Global mean temperature indicators linked to warming levels avoiding climate risks. Environ. Res. Lett. 13, 064015 (2018).

    Google Scholar 

  31. Lenssen, N. J. L. et al. Improvements in the GISTEMP Uncertainty Model. J. Geophys. Res. Atmos. 124, 6307–6326 (2019).

    Google Scholar 

  32. Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

    Google Scholar 

  33. Rohde, R. et al. A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinform. Geostat. 1, https://doi.org/10.4172/2327-4581.1000101 (2013).

  34. Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res. Atmos. 117, D08101 (2012).

    Google Scholar 

  35. Allen, M. R. et al. in Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 1 (IPCC, 2018).

  36. Medhaug, I., Stolpe, M. B., Fischer, E. M. & Knutti, R. Reconciling controversies about the ‘global warming hiatus’. Nature 545, 41–47 (2017).

    Google Scholar 

  37. Hausfather, Z. et al. Assessing recent warming using instrumentally homogeneous sea surface temperature records. Sci. Adv. 3, e1601207 (2017).

    Google Scholar 

  38. Kennedy, J. J., Rayner, N. A., Atkinson, C. P. & Killick, R. E. An ensemble data set of sea surface temperature change from 1850: the Met Office Hadley Centre HadSST.4.0.0.0 data set. J. Geophys. Res. Atmos. 124, 7719–7763 (2019).

    Google Scholar 

  39. Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Google Scholar 

  40. England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).

    Google Scholar 

  41. Huber, M. & Knutti, R. Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nat. Geosci. 7, 651–656 (2014).

    Google Scholar 

  42. Schmidt, A. et al. Volcanic radiative forcing from 1979 to 2015. J. Geophys. Res. Atmos. 123, 12491–12508 (2018).

    Google Scholar 

  43. Schmidt, G. A., Shindell, D. T. & Tsigaridis, K. Reconciling warming trends. Nat. Geosci. 7, 158–160 (2014).

    Google Scholar 

  44. Myhre, G. et al. Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990–2015. Atmos. Chem. Phys. 17, 2709–2720 (2017).

    Google Scholar 

  45. Outten, S., Thorne, P., Bethke, I. & Seland, Ø. Investigating the recent apparent hiatus in surface temperature increases: 1. Construction of two 30-member Earth System Model ensembles. J. Geophys. Res. Atmos. 120, 8575–8596 (2015).

    Google Scholar 

  46. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  47. Volodin, E. & Gritsun, A. Simulation of observed climate changes in 1850–2014 with climate model INM-CM5. Earth Syst. Dynam. 9, 1235–1242 (2018).

    Google Scholar 

  48. The CMIP6 landscape. Nat. Clim. Change 9, 727 (2019).

  49. Jiménez-de-la-Cuesta, D. & Mauritsen, T. Emergent constraints on Earth’s transient and equilibrium response to doubled CO2 from post-1970s global warming. Nat. Geosci. 12, 902–905 (2019).

    Google Scholar 

  50. Report on the Structured Expert Dialogue on the 2013–2015 Review FCCC/SB/2015/INF.1 (UNFCCC, 2015).

  51. Rogelj, J., Schleussner, C.-F. & Hare, W. Getting it right matters: temperature goal interpretations in geoscience research. Geophys. Res. Lett. 44, 10662–10665 (2017).

    Google Scholar 

  52. Schleussner, C.-F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change 6, 827–835 (2016).

    Google Scholar 

  53. Matthews, H. D. et al. National contributions to observed global warming. Environ. Res. Lett. 9, 014010 (2014).

    Google Scholar 

  54. Lowe, J. A. & Bernie, D. The impact of Earth system feedbacks on carbon budgets and climate response. Phil. Trans. R. Soc. A 376, 20170263 (2018).

    Google Scholar 

  55. Comyn-Platt, E. et al. Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks. Nat. Geosci. 11, 568–573 (2018).

    Google Scholar 

  56. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    Google Scholar 

  57. Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 10 (IPCC, Cambridge Univ. Press, 2013).

  58. Kennedy, J. J., Rayner, N. A., Smith, R. O., Parker, D. E. & Saunby, M. Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res. Atmos. 116, D14103 (2011).

    Google Scholar 

  59. Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 27, 57–75 (2013).

    Google Scholar 

  60. Huang, B. et al. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Google Scholar 

  61. Turkington, T., Timbal, B. & Rahmat, R. The impact of global warming on sea surface temperature based El Niño–Southern Oscillation monitoring indices. Int. J. Climatol. 39, 1092–1103 (2019).

    Google Scholar 

  62. Saenko, O. A., Fyfe, J. C., Swart, N. C., Lee, W. G. & England, M. H. Influence of tropical wind on global temperature from months to decades. Clim. Dynam. 47, 2193–2203 (2016).

    Google Scholar 

  63. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Google Scholar 

  64. Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Google Scholar 

  65. Folland, C. K., Boucher, O., Colman, A. & Parker, D. E. Causes of irregularities in trends of global mean surface temperature since the late 19th century. Sci. Adv. 4, eaao5297 (2018).

    Google Scholar 

  66. Lean, J. L. Observation-based detection and attribution of 21st century climate change. WIREs Clim. Change 9, e511 (2018).

    Google Scholar 

  67. Foster, G. & Rahmstorf, S. Global temperature evolution 1979–2010. Environ. Res. Lett. 6, 044022 (2011).

    Google Scholar 

  68. Rypdal, K. The life and death of the recent global surface warming hiatus parsimoniously explained. Climate 6, 64 (2018).

    Google Scholar 

  69. Trenberth, K. E. The definition of El Niño. Bull. Am. Meteorol. Soc. 78, 2771–2778 (1997).

    Google Scholar 

  70. Wolter, K. & Timlin, M. S. El Nino/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol. 31, 1074–1087 (2011).

    Google Scholar 

  71. Deser, C., Guo, R. & Lehner, F. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus. Geophys. Res. Lett. 44, 7945–7954 (2017).

    Google Scholar 

  72. Boer, G. J. et al. The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev. 9, 3751–3777 (2016).

    Google Scholar 

  73. Wang, C.-Y., Xie, S.-P., Kosaka, Y., Liu, Q. & Zheng, X.-T. Global influence of tropical Pacific variability with implications for global warming slowdown. J. Clim. 30, 2679–2695 (2017).

    Google Scholar 

  74. Ridley, D. A. et al. Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophys. Res. Lett. 41, 7763–7769 (2014).

    Google Scholar 

  75. Haustein, K. et al. A limited role for unforced internal variability in twentieth-century warming. J. Clim. 32, 4893–4917 (2019).

    Google Scholar 

Download references

Acknowledgements

We are thankful for the discussions at the workshop on carbon budgets, co-organized by J.R. and attended by K.B.T., N.P.G., H.M.D. and J.R., with the support of the Global Carbon Project, the CRESCENDO project, Stanford University, the University of Melbourne and Simon Fraser University. We thank E. Bush and A. Schurer for helpful insights. We thank K. Cowtan for providing data and the computer code for blending SAT and SST estimates. We thank I. Bethke, G. Foster, C. K. Folland, M. Huber, Y. Kosaka, J. L. Lean, K. Rypdal and A. Schmidt for providing data used in Fig. 2. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. The US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support for CMIP and led the development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. K.B.T, C-F.S. and J.R. were supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 820829 (CONSTRAIN project). K.B.T. was also supported by the UK NERC-funded SMURPHs project (grant no. NE/N006143/1). C.F.S. and P.P. acknowledge support from the German Federal Ministry of Education and Research (grant no. 01LN1711A).

Author information

Authors and Affiliations

Authors

Contributions

C.-F.S. initiated the study. K.B.T. wrote the manuscript with substantial input from C.-F.S., J.R., M.B.S., H.D.M. and N.P.G. Figure 2 was produced by M.B.S., Fig. 3 by P.P. and the remaining figures by K.B.T., with suggestions from other authors. All authors participated in manuscript editing and revisions.

Corresponding author

Correspondence to Katarzyna B. Tokarska.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor(s): Heike Langenberg.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokarska, K.B., Schleussner, CF., Rogelj, J. et al. Recommended temperature metrics for carbon budget estimates, model evaluation and climate policy. Nat. Geosci. 12, 964–971 (2019). https://doi.org/10.1038/s41561-019-0493-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0493-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing