Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fluid overpressure from chemical reactions in serpentinite within the source region of deep episodic tremor

Abstract

Slow fault slip includes a range of transient phenomena that occur over timescales longer than those of standard earthquakes. Slow slip events are often closely associated with swarms of tectonic tremor. Deep episodic tremor and slip close to the slab–mantle interface in subduction zones has been linked to high fluid pressures produced by dehydration of the subducting slab at greater depths. The slab–mantle interface is a fundamental chemical boundary, where mantle rocks are sheared and mixed with oceanic slab lithologies in a highly reactive environment to form serpentinite. Here we present field and microstructural observations from the plate boundary-scale crustal Livingstone Fault in New Zealand that suggest chemical reactions involving serpentinite can promote rock hardening and generate in situ fluid overpressures. We infer that these processes collectively can result in hydrofracturing and a transition from distributed creep to localized brittle failure and faulting. Serpentinite-related reactions occur over a wide range of pressure and temperature conditions that overlap with those in many forearc mantle wedges. We conclude that the release of fluids derived from such reactions may be an additional and widespread mechanism to generate high fluid pressure patches and brittle failure in the source region of deep tremor along the slab–mantle interface.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The habitat of ETS.
Fig. 2: Global compilation of estimated PT conditions of metasomatic reactions involving serpentinite.
Fig. 3: Structural characteristics of the Livingstone Fault serpentinite shear zone36.
Fig. 4: Serpentinite fault rock microstructure and textural evolution during metasomatism.
Fig. 5: Metasomatic vein networks in the serpentinite shear zone.
Fig. 6: Localized brittle faulting associated with metasomatic reaction zones.

Data availability

The data supporting the findings of this study are available within the article and its Supplementary information files.

References

  1. Rogers, G. & Dragert, H. Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science 300, 1942–1943 (2003).

    Article  Google Scholar 

  2. Obara, K., Hirose, H., Yamamizu, F. & Kasahara, K. Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophys. Res. Lett. 31, L23602 (2004).

    Article  Google Scholar 

  3. Shelly, D. R. Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas Fault. Nature 463, 648–652 (2010).

    Article  Google Scholar 

  4. Wech, A. G., Boese, C. M., Stern, T. A. & Townend, J. Tectonic tremor and deep slow slip on the Alpine Fault. Geophys. Res. Lett. 39, L051751 (2012).

    Article  Google Scholar 

  5. Todd, E. K. & Schwartz, S. Y. Tectonic tremor along the northern Hikurangi Margin, New Zealand, between 2010 and 2015. J. Geophys. Res. Solid Earth 121, 8706–8719 (2016).

    Article  Google Scholar 

  6. Shelly, D. R., Beroza, G. C., Ide, S. & Nakamula, S. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442, 188–191 (2006).

    Article  Google Scholar 

  7. Shelly, D. R., Beroza, G. C. & Ide, S. Non-volcanic tremor and low-frequency earthquake swarms. Nature 446, 305–307 (2007).

    Article  Google Scholar 

  8. Ide, S., Shelly, D. R. & Beroza, G. C. Mechanism of deep low frequency earthquakes: further evidence that deep non-volcanic tremor is generated by shear slip on the plate interface. Geophys. Res. Lett. 34, L028890 (2007).

    Article  Google Scholar 

  9. Bostock, M. G., Thomas, A. M., Savard, G., Chuang, L. & Rubin, A. M. Magnitudes and moment-duration scaling of low-frequency earthquakes beneath southern Vancouver Island. J. Geophys. Res. Solid Earth 120, 6329–6350 (2015).

    Article  Google Scholar 

  10. Brown, J. R. et al. Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones. Geophys. Res. Lett. 36, L19306 (2009).

    Article  Google Scholar 

  11. Chestler, S. R. & Creager, K. C. Evidence for a scale-limited low-frequency earthquake source process. J. Geophys. Res. Solid Earth 122, 3099–3114 (2017).

    Article  Google Scholar 

  12. Peacock, S. M., Christensen, N. I., Bostock, M. G. & Audet, P. High pore pressures and porosity at 35 km depth in the Cascadia subduction zone. Geology 39, 471–474 (2011).

    Article  Google Scholar 

  13. Kao, H. et al. A wide depth distribution of seismic tremors along the northern Cascadia margin. Nature 436, 841–844 (2005).

    Article  Google Scholar 

  14. Ito, Y., Obara, K., Shiomi, K., Sekine, S. & Hirose, H. Slow earthquakes coincident with episodic tremors and slow slip events. Science 315, 503–506 (2007).

    Article  Google Scholar 

  15. Audet, P., Bostock, M. G., Christensen, N. I. & Peacock, S. M. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457, 76–78 (2009).

    Article  Google Scholar 

  16. Liu, Y. & Rice, J. R. Spontaneous and triggered aseismic deformation transients in a subduction fault model. J. Geophys. Res. Solid Earth 112, B09404 (2007).

    Google Scholar 

  17. Rubinstein, J. L. et al. Seismic wave triggering of nonvolcanic tremor, episodic tremor and slip, and earthquakes on Vancouver Island. J. Geophys. Res. Solid Earth 114, B00A01 (2009).

    Article  Google Scholar 

  18. Taetz, S., John, T., Bröcker, M., Spandler, C. & Stracke, A. Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface. Earth Planet. Sci. Lett. 482, 33–43 (2018).

    Article  Google Scholar 

  19. Behr, W. M., Kotowski, A. J. & Ashley, K. T. Dehydration-induced rheological heterogeneity and the deep tremor source in warm subduction zones. Geology 46, 475–478 (2018).

    Article  Google Scholar 

  20. Hayman, N. W. & Lavier, L. L. The geologic record of deep episodic tremor and slip. Geology 42, 195–198 (2014).

    Article  Google Scholar 

  21. Fagereng, Å. & Sibson, R. H. Mélange rheology and seismic style. Geology 38, 751–754 (2010).

    Article  Google Scholar 

  22. Fagereng, Å., Remitti, F. & Sibson, R. H. Shear veins observed within anisotropic fabric at high angles to the maximum compressive stress. Nat. Geosci. 3, 482–485 (2010).

    Article  Google Scholar 

  23. Ujiie, K. et al. An explanation of episodic tremor and slow slip constrained by crack-seal veins and viscous shear in subduction mélange. Geophys. Res. Lett. 45, 5371–5379 (2018).

    Article  Google Scholar 

  24. Compton, K. E., Kirkpatrick, J. D. & Holk, G. J. Cyclical shear fracture and viscous flow during transitional ductile-brittle deformation in the Saddlebag Lake Shear Zone, California. Tectonophysics 708, 1–14 (2017).

    Article  Google Scholar 

  25. Audet, P. & Bürgmann, R. Possible control of subduction zone slow-earthquake periodicity by silica enrichment. Nature 510, 389–392 (2014).

    Article  Google Scholar 

  26. Katayama, I., Terada, T., Okazaki, K. & Tanikawa, W. Episodic tremor and slow slip potentially linked to permeability contrasts at the Moho. Nat. Geosci. 5, 731–734 (2012).

    Article  Google Scholar 

  27. Peacock, S. M. Thermal structure and metamorphic evolution of subducting slabs. Geophys. Monogr. Ser. 138, 7–22 (2004).

    Google Scholar 

  28. Peacock, S. M. Thermal and metamorphic environment of subduction zone episodic tremor and slip. J. Geophys. Res. Solid Earth 114, B00A07 (2009).

    Article  Google Scholar 

  29. Fagereng, Å. & Diener, J. F. A. Non-volcanic tremor and discontinuous slab dehydration. Geophys. Res. Lett. 38, L15302 (2011).

    Google Scholar 

  30. McCrory, P. A., Hyndman, R. D. & Blair, J. L. Relationship between the Cascadia fore-arc mantle wedge, nonvolcanic tremor, and the downdip limit of seismogenic rupture. Geochem. Geophys. Geosyst. 15, 1071–1095 (2014).

    Article  Google Scholar 

  31. Hyndman, R. D., McCrory, P. A., Wech, A., Kao, H. & Ague, J. Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition. J. Geophys. Res. Solid Earth 120, 4344–4358 (2015).

    Article  Google Scholar 

  32. Kato, A. et al. Variations of fluid pressure within the subducting oceanic crust and slow earthquakes. Geophys. Res. Lett. 37, L043723 (2010).

    Google Scholar 

  33. Bebout, G. E. & Barton, M. D. Tectonic and metasomatic mixing in a high-T, subduction-zone mélange—insights into the geochemical evolution of the slab–mantle interface. Chem. Geol. 187, 79–106 (2002).

    Article  Google Scholar 

  34. Bebout, G. E. in Metasomatism and the Chemical Transformation of Rock (eds Harlov, D. & Austrheim, H.) 289–349 (Springer, 2013).

  35. Bebout, G. E. & Penniston-Dorland, S. C. Fluid and mass transfer at subduction interfaces—the field metamorphic record. Lithos 240, 228–258 (2016).

    Article  Google Scholar 

  36. Tarling, M. S. et al. The internal structure and composition of a plate-boundary-scale serpentinite shear zone: the Livingstone Fault, New Zealand. Solid Earth 10, 1025–1047 (2019).

    Article  Google Scholar 

  37. Scott, J. M. et al. Element and Sr–O isotope redistribution across a plate boundary-scale crustal serpentinite mélange shear zone, and implications for the slab–mantle interface. Earth Planet. Sci. Lett. 522, 198–209 (2019).

    Article  Google Scholar 

  38. Sorensen, S. S. & Grossman, J. N. Accessory minerals and subduction zone metasomatism: a geochemical comparison of two mélanges (Washington and California, USA). Chem. Geol. 110, 269–297 (1993).

    Article  Google Scholar 

  39. Spandler, C., Hermann, J., Faure, K., Mavrogenes, J. A. & Arculus, R. J. The importance of talc and chlorite “hybrid” rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction mélange of New Caledonia. Contrib. Mineral. Pet. 155, 181–198 (2008).

    Article  Google Scholar 

  40. Evans, B. W. Metamorphism of alpine peridotite and serpentinite. Annu. Rev. Earth Planet. Sci. 5, 397–447 (1977).

    Article  Google Scholar 

  41. Soda, Y. & Takagi, H. Sequential deformation from serpentinite mylonite to metasomatic rocks along the Sashu Fault, SW Japan. J. Struct. Geol. 32, 792–802 (2010).

    Article  Google Scholar 

  42. Nishiyama, T., Shiosaki, C. Y., Mori, Y. & Shigeno, M. Interplay of irreversible reactions and deformation: a case of hydrofracturing in the rodingite–serpentinite system. Prog. Earth Planet. Sci. 4, 1 (2017).

    Article  Google Scholar 

  43. Coombs, D. S. et al. The Dun Mountain Ophiolite Belt, New Zealand, its tectonic setting, constitution, and origin, with special reference to the southern portion. Am. J. Sci. 276, 561–603 (1976).

    Article  Google Scholar 

  44. Rooney, J. S., Tarling, M. S., Smith, S. A. F. & Gordon, K. C. Submicron Raman spectroscopy mapping of serpentinite fault rocks. J. Raman Spectrosc. 49, 279–286 (2018).

    Article  Google Scholar 

  45. Tarling, M. S., Smith, S. A. F., Viti, C. & Scott, J. M. Dynamic earthquake rupture preserved in a creeping serpentinite shear zone. Nat. Commun. 9, 3552 (2018).

    Article  Google Scholar 

  46. Andreani, M., Boullier, A. M. & Gratier, J. P. Development of schistosity by dissolution-crystallization in a Californian serpentinite gouge. J. Struct. Geol. 27, 2256–2267 (2005).

    Article  Google Scholar 

  47. Boschi, C., Früh-Green, G. L. & Escartín, J. Occurrence and significance of serpentinite-hosted, talc-and amphibole-rich fault rocks in modern oceanic settings and ophiolite complexes: an overview. Ofioliti 31, 129–140 (2006).

    Google Scholar 

  48. Peacock, S. M. Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: implications for subduction zones. Contrib. Mineral. Petrol. 95, 55–70 (1987).

    Article  Google Scholar 

  49. Angiboust, S. et al. Probing the transition between seismically coupled and decoupled segments along an ancient subduction interface. Geochem. Geophys. Geosyst. 16, 1905–1922 (2015).

    Article  Google Scholar 

  50. Kawano, S., Katayama, I. & Okazaki, K. Permeability anisotropy of serpentinite and fluid pathways in a subduction zone. Geology 39, 939–942 (2011).

    Article  Google Scholar 

  51. Wintsch, R. P. & Yeh, M. W. Oscillating brittle and viscous behavior through the earthquake cycle in the Red River Shear Zone: monitoring flips between reaction and textural softening and hardening. Tectonophysics 587, 46–62 (2013).

    Article  Google Scholar 

  52. Bürgmann, R. The geophysics, geology and mechanics of slow fault slip. Earth Planet. Sci. Lett. 495, 112–134 (2018).

    Article  Google Scholar 

  53. Plourde, A. P., Bostock, M. G., Audet, P. & Thomas, A. M. Low-frequency earthquakes at the southern Cascadia margin. Geophys. Res. Lett. 42, 4849–4855 (2015).

    Article  Google Scholar 

  54. Bostock, M. G., Hyndman, R. D., Rondenay, S. & Peacock, S. M. An inverted continental Moho and serpentinization of the forearc mantle. Nature 417, 536–538 (2002).

    Article  Google Scholar 

  55. Agard, P., Plunder, A., Angiboust, S., Bonnet, G. & Ruh, J. The subduction plate interface: rock record and mechanical coupling (from long to short time scales). Lithos 320–321, 537–566 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Marsden Fund Council (projects UOO1417 and UOO1829) administered by the Royal Society Te Apārangi, with additional funding from University of Otago Research Grants. We thank M. Negrini and B. Pooley for technical support.

Author information

Authors and Affiliations

Authors

Contributions

M.S.T., S.A.F.S. and J.M.S. carried out fieldwork and performed microstructural analysis of fault rocks. M.S.T. wrote the paper with discussion and input from all authors. S.A.F.S. and J.M.S. supervised the project.

Corresponding author

Correspondence to Matthew S. Tarling.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor(s): Stefan Lachowycz.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Tables 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tarling, M.S., Smith, S.A.F. & Scott, J.M. Fluid overpressure from chemical reactions in serpentinite within the source region of deep episodic tremor. Nat. Geosci. 12, 1034–1042 (2019). https://doi.org/10.1038/s41561-019-0470-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0470-z

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing