Infrasound from giant bubbles during explosive submarine eruptions

Article metrics


Shallow submarine volcanoes pose unique scientific and monitoring challenges. The interaction between water and magma can create violent explosions just below the surface, but the inaccessibility of submerged volcanoes means they are typically not instrumented. This both increases the risk to marine and aviation traffic and leaves the underlying eruption physics poorly understood. Here we use low-frequency sound in the atmosphere (infrasound) to examine the source mechanics of shallow submarine explosions from Bogoslof volcano, Alaska. We show that the infrasound originates from the oscillation and rupture of magmatic gas bubbles that initially formed from submerged vents, but that grew and burst above sea level. We model the low-frequency signals as overpressurized gas bubbles that grow near the water–air interface, which require bubble radii of 50–220 m. Bubbles of this size and larger have been described in explosive subaqueous eruptions for more than a century, but we present a unique geophysical record of this phenomenon. We propose that the dominant role of seawater during the effusion of gas-rich magma into shallow water is to repeatedly produce a gas-tight seal near the vent. This resealing mechanism leads to sequences of violent explosions and the release of large, bubble-forming volumes of gas—activity we describe as hydrovulcanian.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Map of Bogoslof volcano and two satellite images of the partially submerged summit and crater during the eruption.
Fig. 2: Infrasound signals from an explosive eruption of Bogoslof on 13 June 2017.
Fig. 3: Results from modelling the Bogoslof infrasound signals as bubble oscillations.
Fig. 4: Schematic cartoon of the bubble cycle and stages of a hydrovulcanian explosion.

Data availability

Observations of volcanic activity were made by AVO and are detailed on its website ( The infrasound data analysed in this study are available for download from the IRIS-DMC ( or from the corresponding author upon request.


  1. 1.

    Mastin, L. G. & Witter, J. B. The hazards of eruptions through lakes and seawater. J. Volcanol. Geotherm. Res. 97, 195–214 (2000).

  2. 2.

    Embley, R. W. et al. Long-term eruptive activity at a submarine arc volcano. Nature 441, 494–497 (2006).

  3. 3.

    White, J. D. L., Smellie, J. L. & Clague, D. A. in Explosive Subaqueous Volcanism (eds White, J. D. L., Smellie, J. L. & Clague, D. A.) 1–23 (American Geophysical Union, 2013).

  4. 4.

    Green, D. N. et al. Hydroacoustic, infrasonic and seismic monitoring of the submarine eruptive activity and sub-aerial plume generation at South Sarigan, May 2010. J. Volcanol. Geotherm. Res. 257, 31–43 (2013).

  5. 5.

    Fiske, R. S., Cashman, K. V., Shibata, A. & Watanabe, K. Tephra dispersal from Myojinsho, Japan, during its shallow submarine eruption of 1952–1953. Bull. Volcanol. 59, 262–275 (1998).

  6. 6.

    Kano, K. in Explosive Subaqueous Volcanism (eds White, J. D. L., Smellie, J. L. & Clague, D. A.) 213–229 (American Geophysical Union, 2013).

  7. 7.

    Wohletz, K. H. Explosive magma–water interactions: thermodynamics, explosion mechanisms, and field studies. Bull. Volcanol. 48, 245–264 (1986).

  8. 8.

    Schipper, C. I. & White, J. D. L. Magma–slurry interaction in Surtseyan eruptions. Geology 44, 195–198 (2016).

  9. 9.

    Ichihara, M. et al. Airwaves generated by an underwater explosion: implications for volcanic infrasound. J. Geophys. Res. 114, B03210 (2009).

  10. 10.

    Zimanowski, B., Biittner, R., Lorenz, V. & Häbulletifele, H.-G. Fragmentation of basaltic melt in the course of explosive volcanism. J. Geophys. Res. 102, 803–814 (1997).

  11. 11.

    Morrissey, M., Gisler, G., Weaver, R. & Gittings, M. Numerical model of crater lake eruptions. Bull. Volcanol. 72, 1169–1178 (2010).

  12. 12.

    Morimoto, R. & Ossaka, J. The 1952–1953 submarine eruption of the Myojin Reef near the Bayonnaise Rocks, Japan. Tokyo Univ. Earthq. Res. Inst. Bull. 33, 221–250 (1955).

  13. 13.

    Belousov, A. & Belousova, M. in Volcaniclastic Sediment. Lacustrine Settings (eds White, J.D.L. & Riggs, N. R.) 35–60 (Wiley, 2009).

  14. 14.

    Thorarinsson, S. The Surtsey Eruption: Course of the Events and the Development of the New Island. Surtsey Research Progress Report 1 (Surtsey Research Society, 1965).

  15. 15.

    Watts, A. B. et al. Rapid rates of growth and collapse of Monowai submarine volcano in the Kermadec Arc. Nat. Geosci. 5, 510–515 (2012).

  16. 16.

    Metz, D., Watts, A. B., Grevemeyer, I., Rodgers, M. & Paulatto, M. Ultra-long-range hydroacoustic observations of submarine volcanic activity at Monowai, Kermadec Arc. Geophys. Res. Lett. 43, 1529–1536 (2016).

  17. 17.

    Cole, R. H. Underwater Explosions (Princeton Univ. Press, 1948).

  18. 18.

    Kedrinskii, V. K. Hydrodynamics of Explosion: Experiments and Models (Springer, 2005).

  19. 19.

    Fee, D. & Matoza, R. S. An overview of volcano infrasound: from Hawaiian to Plinian, local to global. J. Volcanol. Geotherm. Res. 249, 123–139 (2013).

  20. 20.

    Johnson, J. B. & Ripepe, M. Volcano infrasound: a review. J. Volcanol. Geotherm. Res. 206, 61–69 (2011).

  21. 21.

    Godin, O. A. Anomalous Transparency of water–air interface for low-frequency sound. Phys. Rev. Lett. 97, 164301 (2006).

  22. 22.

    Evers, L. G. et al. Evanescent wave coupling in a geophysical system: airborne acoustic signals from the Mw 8.1 Macquarie Ridge earthquake. Geophys. Res. Lett. 41, 1644–1650 (2014).

  23. 23.

    Ripepe, M. & Gordeev, E. Infrasonic waves and volcanic tremor at Stromboli. Geophys. Res. Lett. 23, 181–184 (1996).

  24. 24.

    Rowe, C. A., Aster, R. C., Kyle, P. R., Dibble, R. R. & Schlue, J. W. Seismic and acoustic observations at Mount Erebus volcano, Ross Island, Antarctica, 1994-1998. J. Volcanol. Geotherm. Res. 101, 105–128 (2000).

  25. 25.

    Vergniolle, S. & Brandeis, G. Strombolian explosions: 1. A large bubble breaking at the surface of a lava column as a source of sound. J. Geophys. Res. 101, 20433 (1996).

  26. 26.

    Vergniolle, S. & Ripepe, M. From Strombolian explosions to fire fountains at Etna Volcano (Italy): what do we learn from acoustic measurements? Geol. Soc. Lond. Spec. Publ. 307, 103–124 (2008).

  27. 27.

    Coombs, M. L. et al. Short-term forecasting and detection of explosions during the 2016–2017 eruption of Bogoslof volcano, Alaska. Front. Earth Sci. 6, 122 (2018).

  28. 28.

    Haney, M. M. et al. Volcanic thunder from explosive eruptions at Bogoslof volcano, Alaska. Geophys. Res. Lett. 45, 3429–3435 (2018).

  29. 29.

    Olson, J. V. & Szuberla, C. A. L. Distribution of wave packet sizes in microbarom wave trains observed in Alaska. J. Acoust. Soc. Am. 117, 1032–1037 (2005).

  30. 30.

    Johnson, J. B., Aster, R. C. & Kyle, P. R. Volcanic eruptions observed with infrasound. Geophys. Res. Lett. 31, L14604 (2004).

  31. 31.

    Vergniolle, S., Boichu, M. & Caplan-Auerbach, J. Acoustic measurements of the 1999 basaltic eruption of Shishaldin volcano, Alaska: 1. Origin of Strombolian activity. J. Volcanol. Geotherm. Res. 137, 109–134 (2004).

  32. 32.

    Lighthill, J. Waves in Fluids (Cambridge Univ. Press, 1978).

  33. 33.

    Vergniolle, S. & Brandeis, G. Origin of the sound generated by Strombolian explosions. Geophys. Res. Lett. 21, 1959–1962 (1994).

  34. 34.

    Johnson, J., Aster, R., Jones, K. R., Kyle, P. & McIntosh, B. Acoustic source characterization of impulsive Strombolian eruptions from the Mount Erebus lava lake. J. Volcanol. Geotherm. Res. 177, 673–686 (2008).

  35. 35.

    Gerst, A., Hort, M., Aster, R. C., Johnson, J. B. & Kyle, P. R. The first second of volcanic eruptions from the Erebus volcano lava lake, Antarctica—energies, pressures, seismology, and infrasound. J. Geophys. Res. Solid Earth 118, 3318–3340 (2013).

  36. 36.

    Johnson, J. B. & Miller, A. J. C. Application of the monopole source to quantify explosive flux during vulcanian explosions at Sakurajima Volcano (Japan). Seismol. Res. Lett. 85, 1163–1176 (2014).

  37. 37.

    Firstov, P. P. & Kravchenko, N. M. Estimation of the amount of explosive gas released in volcanic eruptions using air waves. Volcanol. Seismol. 17, 547–560 (1996).

  38. 38.

    Simojoki, H. On seiches in some lakes in Finland. Geophysica 7, 145–150 (1961).

  39. 39.

    Garcés, M. et al. Infrasound from large surf. Geophys. Res. Lett. 33, L05611 (2006).

  40. 40.

    Bouche, E. et al. The role of large bubbles detected from acoustic measurements on the dynamics of Erta ′Ale lava lake (Ethiopia). Earth Planet. Sci. Lett. 295, 37–48 (2010).

  41. 41.

    Kobayashi, T., Namiki, A. & Sumita, I. Excitation of airwaves caused by bubble bursting in a cylindrical conduit: experiments and a model. J. Geophys. Res. Solid Earth 115, B10201 (2010).

  42. 42.

    Plesset, M. S. & Prosperetti, A. Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145–185 (1977).

  43. 43.

    Leighton, T. G. The Acoustic Bubble (Academic, 1994).

  44. 44.

    Lu, N. Q., Oguz, H. N. & Prosperetti, A. The oscillations of a small floating bubble. Phys. Fluids A Fluid Dyn. 1, 252–260 (1989).

  45. 45.

    Cheminée, J. L. et al. Gas-rich submarine exhalations during the 1989 eruption of Macdonald Seamount. Earth Planet. Sci. Lett. 107, 318–327 (1991).

  46. 46.

    Rubin, K. H. & Macdougall, J. D. Submarine magma degassing and explosive magmatism at Macdonald (Tamarii) seamount. Nature 341, 50–52 (1989).

  47. 47.

    Waythomas, C. F. & Cameron, C. Historical Eruptions and Hazards at Bogoslof Volcano Alaska U.S. Science Investigation Report 2018-5085 (US Geological Survey, 2018).

  48. 48.

    Prosser, W. T. Nature turned sorceress. Tech. World Mag. XV, 64–68 (1911).

  49. 49.

    Iezzi, A.M., Schwaiger, H. F., Fee, D. & Haney, M. Application of an updated atmospheric model to explore volcano infrasound propagation and detection in Alaska. J. Volcanol. Geotherm. Res. 371, 192–205 (2018).

  50. 50.

    Krieger, J. R. & Chahine, G. L. Acoustic signals of underwater explosions near surfaces. J. Acoust. Soc. Am. 118, 2961–2974 (2005).

  51. 51.

    Ripepe, M. & Marchetti, E. Array tracking of infrasonic sources at Stromboli volcano. Geophys. Res. Lett. 29, 33-1–33–4 (2002).

  52. 52.

    Chouet, B. et al. Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment–tensor inversions of very-long-period data. J. Geophys. Res. Solid Earth 108, ESE 7-1–ESE 7-25 (2003).

  53. 53.

    Fee, D. et al. Eruption mass estimation using infrasound waveform inversion and ash and gas measurements: evaluation at Sakurajima Volcano, Japan. Earth Planet. Sci. Lett. 480, 42–52 (2017).

  54. 54.

    Ripepe, M. & Harris, A. Dynamics of the 5 April 2003 explosive paroxysm observed at Stromboli by a near-vent thermal, seismic and infrasonic array. Geophys. Res. Lett. 35, L07306 (2008).

  55. 55.

    Wech, A., Tepp, G., Lyons, J. & Haney, M. Using earthquakes, T waves, and infrasound to investigate the eruption of Bogoslof Volcano, Alaska. Geophys. Res. Lett. 45, 6918–6925 (2018).

  56. 56.

    Wohletz, K., Zimanowski, B. & Büttner, R. in Modeling Volcanic Processes: The Physics and Mathematics of Volcanism (eds Fagents, S. A., Gregg, T. K. P. & Lopes, R. M. C.) 230–257 (Cambridge Univ. Press, 2013).

  57. 57.

    Sheridan, M. F. & Wohletz, K. H. Hydrovolcanic explosions: the systematics of water–pyroclast equilibration. Science 212, 1387–1389 (1981).

  58. 58.

    Kokelaar, B. P. The mechanism of Surtseyan volcanism. J. Geol. Soc. Lond. 140, 939–944 (1983).

  59. 59.

    Clarke, A. Modeling Volcanic Processes: The Physics and Mathematics of Volcanism (eds Fagents, S. A., Gregg, T. K. P. & Lopes, R. M. C.) 129–152 (Cambridge Univ. Press, 2013);

  60. 60.

    Albert, S., Fee, D., Firstov, P., Makhmudov, E. & Izbekov, P. Infrasound from the 2012–2013 Plosky Tolbachik, Kamchatka fissure eruption. J. Volcanol. Geotherm. Res. 307, 68–78 (2015).

  61. 61.

    Dalton, M. P., Waite, G. P., Watson, I. M. & Nadeau, P. A. Multiparameter quantification of gas release during weak Strombolian eruptions at Pacaya Volcano, Guatemala. Geophys. Res. Lett. 37, L09303 (2010).

  62. 62.

    Kim, K., Fee, D., Yokoo, A. & Lees, J. M. Acoustic source inversion to estimate volume flux from volcanic explosions. Geophys. Res. Lett. 42, 5243–5249 (2015).

  63. 63.

    Kim, K., Lees, J. M. & Ruiz, M. Acoustic multipole source model for volcanic explosions and inversion for source parameters. Geophys. J. Int. 191, 1192–1204 (2012).

  64. 64.

    Matoza, R. S., Fee, D., Neilsen, T. B., Gee, K. L. & Ogden, D. E. Aeroacoustics of volcanic jets: acoustic power estimation and jet velocity dependence. J. Geophys. Res. Solid Earth 118, 6269–6284 (2013).

  65. 65.

    McKee, K., Fee, D., Yokoo, A., Matoza, R. S. & Kim, K. Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan. J. Volcanol. Geotherm. Res. 340, 16–29 (2017).

  66. 66.

    Woulff, G. & McGetchin, T. R. Acoustic noise from volcanoes: theory and experiment. Geophys. J. R. Astron. Soc. 45, 601–616 (1976).

  67. 67.

    Vergniolle, S. & Caplan-Auerbach, J. Basaltic thermals and subplinian plumes: constraints from acoustic measurements at Shishaldin volcano, Alaska. Bull. Volcanol. 68, 611–630 (2006).

  68. 68.

    Caplan-Auerbach, J., Bellesiles, A. & Fernandes, J. K. Estimates of eruption velocity and plume height from infrasonic recordings of the 2006 eruption of Augustine Volcano, Alaska. J. Volcanol. Geotherm. Res. 189, 12–18 (2010).

  69. 69.

    Ripepe, M. et al. Ash-plume dynamics and eruption source parameters by infrasound and thermal imagery: the 2010 Eyjafjallajökull eruption. Earth Planet. Sci. Lett. 366, 112–121 (2013).

  70. 70.

    Delle Donne, D. & Ripepe, M. High-frame rate thermal imagery of strombolian explosions: implications for explosive and infrasonic source dynamics. J. Geophys. Res. Solid Earth 117, B09206 (2012).

  71. 71.

    Kinney, G. F. & Graham, K. J. Explosive Shocks in Air 2nd edn (Springer, 1985).

  72. 72.

    Morrissey, M. M. & Chouet, B. A. Burst conditions of explosive volcanic eruptions recorded on microbarographs. Science 275, 1290–1293 (1997).

  73. 73.

    Ichinose, G., Anderson, J. G., Schweickert, R. A. & Lahren, M. M. The potential hazard from tsunami and seiche waves generated by large earthquakes within Lake Tahoe, California–Nevada. Geophys. Res. Lett. 27, 1203–1206 (2000).

  74. 74.

    Walter, F., Olivieri, M. & Clinton, J. F. Calving event detection by observation of seiche effects on the Greenland fjords. J. Glaciol. 59, 162–178 (2013).

  75. 75.

    Rueda, F. J. & Schladow, S. G. Surface seiches in lakes of complex geometry. Limnol. Oceanogr. 47, 906–910 (2002).

  76. 76.

    Lacanna, G. et al. Influence of atmospheric structure and topography on infrasonic wave propagation. J. Geophys. Res. Solid Earth 119, 2988–3005 (2014).

  77. 77.

    Pierce, A. D. Acoustics—An Introduction to Its Physical Principles and Applications (McGraw-Hill, 1981).

Download references


The authors thank AVO staff members for their contributions to the data presented here and numerous discussions about the Bogoslof activity during and following the eruption. Thanks to O. Lamb, L. Mastin and S. Vergniolle for insightful comments that helped refine the paper. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

J.J.L., M.M.H., D.F. and A.G.W. initiated the study and guided the investigation. J.J.L. and M.M.H. processed the data and performed the numerical modeling. A.G.W. and J.J.L. produced the map in Fig. 1a and C.F.W. processed the images for Fig. 1b,c. J.J.L. wrote the manuscript with input from all the co-authors.

Correspondence to John J. Lyons.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor(s): Melissa Plail; Rebecca Neely.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lyons, J.J., Haney, M.M., Fee, D. et al. Infrasound from giant bubbles during explosive submarine eruptions. Nat. Geosci. 12, 952–958 (2019) doi:10.1038/s41561-019-0461-0

Download citation

Further reading