West Antarctic surface melt triggered by atmospheric rivers

Abstract

Recent major melting events in West Antarctica have raised concerns about a potential hydrofracturing and ice shelf instability. These events often share common forcings of surface melt-like anomalous radiative fluxes, turbulent heat fluxes and föhn winds. Using an atmospheric river detection algorithm developed for Antarctica together with surface melt datasets, we produced a climatology of atmospheric river-related surface melting around Antarctica and show that atmospheric rivers are associated with a large percentage of these surface melt events. Despite their rarity (around 12 events per year in West Antarctica), atmospheric rivers are associated with around 40% of the total summer meltwater generated across the Ross Ice Shelf to nearly 100% in the higher elevation Marie Byrd Land and 40–80% of the total winter meltwater generated on the Wilkins, Bach, George IV and Larsen B and C ice shelves. These events were all related to high-pressure blocking ridges that directed anomalous poleward moisture transport towards the continent. Major melt events in the West Antarctic Ice Sheet only occur about a couple times per decade, but a 1–2 °C warming and continued increase in atmospheric river activity could increase the melt frequency with consequences for ice shelf stability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The yearly percentage of six-hourly AR occurrences to make landfall detected in the multireanalysis dataset and points of interest.
Fig. 2: Surface melt associated with ARs and average AR life cycle on landfall.
Fig. 3: Atmospheric variables associated with an AR that contributed to the 25–30 May 2016 melt event.
Fig. 4: Corresponding conditions during the detected ARs in WAIS.

Data availability

The MAR data are publicly available from https://doi.org/10.5281/zenodo.3362277. The daily surface melt satellite observations are publicly available at http://pp.ige-grenoble.fr/pageperso/picardgh/melting/

Code availability

The scripts for the AR detection algorithms discussed in this paper are available at https://github.com/jwille45/Antarctic-lab. Additional versions of the algorithm will be made available as they are completed.

References

  1. 1.

    Shepherd, A. et al. A reconciled estimate of ice-sheet mass balance. Science 338, 1183–1189 (2012).

    Article  Google Scholar 

  2. 2.

    The IMBIE team Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).

    Article  Google Scholar 

  3. 3.

    Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat. Clim. Change 4, 117–121 (2014).

    Article  Google Scholar 

  4. 4.

    Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B. & Katsman, C. A. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6, 376–379 (2013).

    Article  Google Scholar 

  5. 5.

    Glasser, N. F. & Scambos, T. A. A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse. J. Glaciol. 54, 3–16 (2008).

    Article  Google Scholar 

  6. 6.

    De Rydt, J., Gudmundsson, G. H., Rott, H. & Bamber, J. L. Modeling the instantaneous response of glaciers after the collapse of the Larsen B Ice Shelf. Geophys. Res. Lett. 42, 5355–5363 (2015).

    Article  Google Scholar 

  7. 7.

    Bell, R. E., Banwell, A. F., Trusel, L. D. & Kingslake, J. Antarctic surface hydrology and impacts on ice-sheet mass balance. Nat. Clim. Change 8, 1044–1052 (2018).

    Article  Google Scholar 

  8. 8.

    Luckman, A. et al. Surface melt and ponding on Larsen C Ice Shelf and the impact of föhn winds. Antarct. Sci. 26, 625–635 (2014).

    Article  Google Scholar 

  9. 9.

    Borstad, C. P., Rignot, E., Mouginot, J. & Schodlok, M. P. Creep deformation and buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf. Cryosphere 7, 1931–1947 (2013).

    Article  Google Scholar 

  10. 10.

    Bozkurt, D., Rondanelli, R., Marín, J. C. & Garreaud, R. Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. J. Geophys. Res. Atmos. 123, 3871–3892 (2018).

    Article  Google Scholar 

  11. 11.

    Zhu, Y. & Newell, R. E. Atmospheric rivers and bombs. Geophys. Res. Lett. 21, 1999–2002 (1994).

    Article  Google Scholar 

  12. 12.

    Ralph, F. M. et al. Atmospheric rivers emerge as a global science and applications focus. Bull. Am. Meteorol. Soc. 98, 1969–1973 (2017).

    Article  Google Scholar 

  13. 13.

    Ralph, F. M., Neiman, P. J. & Wick, G. A. Satellite and CALJET aircraft observations of atmospheric rivers over the eastern north Pacific Ocean during the winter of 1997/98. Monthly Weather Rev. 132, 1721–1745 (2004).

    Article  Google Scholar 

  14. 14.

    Harrold, T. W. Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Q. J. Roy. Meteorol. Soc. 99, 232–251 (1973).

    Article  Google Scholar 

  15. 15.

    Dacre, H. F., Clark, P. A., Martinez-Alvarado, O., Stringer, M. A. & Lavers, D. A. How do atmospheric rivers form? Bull. Am. Meteorol. Soc. 96, 1243–1255 (2015).

    Article  Google Scholar 

  16. 16.

    Zhu, Y. & Newell, R. E. A proposed algorithm for moisture fluxes from atmospheric rivers. Monthly Weather Rev. 126, 725–735 (1998).

    Article  Google Scholar 

  17. 17.

    Nash, D., Waliser, D., Guan, B., Ye, H. & Ralph, F. M. The role of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos. 123, 6804–6821 (2018).

    Article  Google Scholar 

  18. 18.

    Gorodetskaya, I. V. et al. The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett. 41, 6199–6206 (2014).

    Article  Google Scholar 

  19. 19.

    Hegyi, B. M. & Taylor, P. C. The unprecedented 2016–2017 Arctic sea ice growth season: the crucial role of atmospheric rivers and longwave fluxes. Geophys. Res. Lett. 45, 5204–5212 (2018).

    Article  Google Scholar 

  20. 20.

    Komatsu, K. K., Alexeev, V. A., Repina, I. A. & Tachibana, Y. Poleward upgliding Siberian atmospheric rivers over sea ice heat up Arctic upper air. Sci. Rep. 8, 2872 (2018).

    Article  Google Scholar 

  21. 21.

    Mattingly, K. S., Mote, T. L. & Fettweis, X. Atmospheric river impacts on Greenland ice sheet surface mass balance. J. Geophys. Res. Atmos. 123, 8538–8560 (2018).

    Article  Google Scholar 

  22. 22.

    Neff, W., Compo, G. P., Martin Ralph, F. & Shupe, M. D. Continental heat anomalies and the extreme melting of the Greenland ice surface in 2012 and 1889: melting of Greenland in 1889 and 2012. J. Geophys. Res. Atmos. 119, 6520–6536 (2014).

    Article  Google Scholar 

  23. 23.

    Neff, W. Atmospheric rivers melt Greenland. Nat. Clim. Change 8, 857–858 (2018).

    Article  Google Scholar 

  24. 24.

    Picard, G. & Fily, M. Surface melting observations in Antarctica by microwave radiometers: correcting 26-year time series from changes in acquisition hours. Remote Sens. Environ. 104, 325–336 (2006).

    Article  Google Scholar 

  25. 25.

    Agosta, C. et al. Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. Cryosphere 13, 281–296 (2019).

    Article  Google Scholar 

  26. 26.

    Liu, H., Wang, L. & Jezek, K. C. Spatiotemporal variations of snowmelt in Antarctica derived from satellite Scanning Multichannel Microwave Radiometer and Special Sensor Microwave Imager data (1978–2004). J. Geophys. Res. 111, F01003 (2006).

    Article  Google Scholar 

  27. 27.

    Van Tricht, K. et al. Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun. 7, 10266 (2016).

    Article  Google Scholar 

  28. 28.

    Zou, X., Bromwich, D. H., Nicolas, J. P., Montenegro, A. & Wang, S. West Antarctic surface melt event of January 2016 facilitated by föhn warming. Q. J. Roy. Meteorol. Soc. 145, 687–704 (2019).

    Article  Google Scholar 

  29. 29.

    Nicolas, J. P. et al. January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nat. Commun. 8, 15799 (2017).

    Article  Google Scholar 

  30. 30.

    Hu, X., Sejas, S. A., Cai, M., Li, Z. & Yang, S. Atmospheric dynamics footprint on the January 2016 ice sheet melting in West Antarctica. Geophys. Res. Lett. 46, 2829–2835 (2019).

    Article  Google Scholar 

  31. 31.

    Kuipers Munneke, P., van den Broeke, M. R., King, J. C., Gray, T. & Reijmer, C. H. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula. Cryosphere 6, 353–363 (2012).

    Article  Google Scholar 

  32. 32.

    Kuipers Munneke, P. et al. Intense winter surface melt on an Antarctic ice shelf. Geophys. Res. Lett. 45, 7615–7623 (2018).

    Article  Google Scholar 

  33. 33.

    Cape, M. R. et al. Foehn winds link climate-driven warming to ice shelf evolution in Antarctica. J. Geophys. Res. Atmos. 120, 11,037–11,057 (2015).

    Article  Google Scholar 

  34. 34.

    Elvidge, A. D., Renfrew, I. A., King, J. C., Orr, A. & Lachlan-Cope, T. A. Foehn warming distributions in nonlinear and linear flow regimes: a focus on the Antarctic Peninsula: foehn warming distributions in nonlinear and linear flow regimes. Q. J. Roy. Meteorol. Soc. 142, 618–631 (2016).

    Article  Google Scholar 

  35. 35.

    Scott, R. C., Nicolas, J. P., Bromwich, D. H., Norris, J. R. & Lubin, D. Meteorological drivers and large-scale climate forcing of West Antarctic surface melt. J. Clim. 32, 665–684 (2019).

    Article  Google Scholar 

  36. 36.

    Marshall, G. J., Thompson, D. W. J. & van den Broeke, M. R. The signature of southern hemisphere atmospheric circulation patterns in Antarctic precipitation. Geophys. Res. Lett. 44, 11,580–11,589 (2017).

    Article  Google Scholar 

  37. 37.

    Schneider, D. P., Okumura, Y. & Deser, C. Observed Antarctic interannual climate variability and tropical linkages. J. Clim. 25, 4048–4066 (2012).

    Article  Google Scholar 

  38. 38.

    Mo, K. C. & Higgins, R. W. The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Monthly Weather Rev. 126, 1581–1596 (1998).

    Article  Google Scholar 

  39. 39.

    Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J. & Orr, A. The Amundsen Sea low. Int. J. Climatol. 33, 1818–1829 (2013).

    Article  Google Scholar 

  40. 40.

    Clem, K. R., Orr, A. & Pope, J. O. The springtime influence of natural tropical Pacific variability on the surface climate of the Ross Ice Shelf, West Antarctica: implications for ice shelf thinning. Sci. Rep. 8, 11983 (2018).

    Article  Google Scholar 

  41. 41.

    Palerme, C. et al. Evaluation of current and projected Antarctic precipitation in CMIP5 models. Clim. Dyn. 48, 225–239 (2017).

    Article  Google Scholar 

  42. 42.

    Bromwich, D. H. et al. Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci. 6, 139–145 (2012).

    Article  Google Scholar 

  43. 43.

    Espinoza, V., Waliser, D. E., Guan, B., Lavers, D. A. & Ralph, F. M. Global analysis of climate change projection effects on atmospheric rivers. Geophys. Res. Lett. 45, 4299–4308 (2018).

    Article  Google Scholar 

  44. 44.

    Alley, K. E., Scambos, T. A., Miller, J. Z., Long, D. G. & MacFerrin, M. Quantifying vulnerability of Antarctic ice shelves to hydrofracture using microwave scattering properties. Remote Sens. Environ. 210, 297–306 (2018).

    Article  Google Scholar 

  45. 45.

    Kingslake, J., Ely, J. C., Das, I. & Bell, R. E. Widespread movement of meltwater onto and across Antarctic ice shelves. Nature 544, 349–352 (2017).

    Article  Google Scholar 

  46. 46.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article  Google Scholar 

  47. 47.

    Scambos, T. et al. Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth Planet. Sci. Lett. 280, 51–60 (2009).

    Article  Google Scholar 

  48. 48.

    Dufour, A., Charrondière, C. & Zolina, O. Analysed and observed moisture transport as a proxy for snow accumulation in East Antarctica. Cryosphere Discuss. https://doi.org/10.5194/tc-2018-156 (2018).

  49. 49.

    Shields, C. A. et al. Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design. Geoscientific Model Dev. 11, 2455–2474 (2018).

    Article  Google Scholar 

  50. 50.

    Guan, B. & Waliser, D. E. Atmospheric rivers in 20 year weather and climate simulations: a multimodel, global evaluation. J. Geophys. Res. Atmos. 122, 5556–5581 (2017).

    Article  Google Scholar 

  51. 51.

    Agosta, C., Fettweis, X. & Wille, J. D. Antarctic continent MAR 6-hourly data [Data set]. Zenodo Digital Repository https://doi.org/10.5281/zenodo.3362277 (2019).

  52. 52.

    Brun, E., David, P., Sudul, M. & Brunot, G. A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J. Glaciol. 38, 13–22 (1992).

    Article  Google Scholar 

  53. 53.

    Datta, R. T. et al. Melting over the northeast Antarctic Peninsula (1999–2009): evaluation of a high-resolution regional climate model. Cryosphere 12, 2901–2922 (2018).

    Article  Google Scholar 

  54. 54.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  55. 55.

    Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn 93, 5–48 (2015).

    Article  Google Scholar 

  56. 56.

    Saha, S. et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1058 (2010).

    Article  Google Scholar 

  57. 57.

    Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article  Google Scholar 

  58. 58.

    Kalnay, E. et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

    Article  Google Scholar 

  59. 59.

    Kanamitsu, M. et al. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 1631–1644 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This study is part of the PhD project of J.D.W. conducted at the Université Grenoble Alpes. We acknowledge support from the Agence Nationale de la Recherche, projects ANR-14-CE01-0001 (ASUMA), ANR-16-CE01-0011 (EAIIST) and ANR-15-CE01-0015 (AC-AHC2). I.V.G. thanks FCT/MCTES for the financial support to CESAM (UID/AMB/50017/2019) through national funds. C.A. acknowledges support from the Fondation Albert 2 de Monaco under project Antarctic-Snow (2018–2020). C.A. performed the MAR simulations during her Belgian Fund for Scientific Research (F.R.S.-FNRS) research fellowship. Computational resources were provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the F.R.S.-FNRS under grant no. 2.5020.11.

Author information

Affiliations

Authors

Contributions

J.D.W. devised the study and led the writing of the manuscript using input from the co-authors. A.D. supplied the reanalysis datasets and aided in the development of the AR detection algorithm. I.V.G. advised on the physics of ARs, applied the second AR detection algorithm, analysed the data, plotted and provided descriptive text for Fig. 3 and Supplemetary Figs. 6, 9 and 10. C.A. performed the MAR simulations and advised on its implementation. V.F., J.T., and F.C. contributed to the development of the study and the preparation of the manuscript.

Corresponding author

Correspondence to Jonathan D. Wille.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor(s): Heike Langenberg.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wille, J.D., Favier, V., Dufour, A. et al. West Antarctic surface melt triggered by atmospheric rivers. Nat. Geosci. 12, 911–916 (2019). https://doi.org/10.1038/s41561-019-0460-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing