Abstract
Estimates of the volume of the earliest crust based on zircon ages and radiogenic isotopes remain equivocal. Stable isotope systems, such as molybdenum, have the potential to provide further constraints but remain underused due to the lack of complementarity between mantle and crustal reservoirs. Here we present molybdenum isotope data for Archaean komatiites and Phanerozoic komatiites and picrites and demonstrate that their mantle sources all possess subchondritic signatures complementary to the superchondritic continental crust. These results confirm that the present-day degree of mantle depletion was achieved by 3.5 billion years ago and that Earth has been in a steady state with respect to molybdenum recycling. Mass balance modelling shows that this early mantle depletion requires the extraction of a far greater volume of mafic-dominated protocrust than previously thought, more than twice the volume of the continental crust today, implying rapid crustal growth and destruction in the first billion years of Earth’s history.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All data generated during this study are included in the published article and its supplementary information files.
References
Condie, K. C. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet. Sci. Lett. 163, 97–108 (1998).
Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012).
Korenaga, J. Estimating the formation age distribution of continental crust by unmixing zircon ages. Earth Planet. Sci. Lett. 482, 388–395 (2018).
Campbell, I. H. Constraints on continental growth models from Nb/U ratios in the 3.5 Ga Barberton and other Archaean basalt-komatiite suites. Am. J. Sci. 303, 319–351 (2003).
Armstrong, R. L. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. R. Soc. Lond. A 301, 443–472 (1981).
McCulloch, M. T. & Bennett, V. C. Progressive growth of the Earth’s continental crust and depleted mantle: geochemical constraints. Geochim. Cosmochim. Acta 58, 4717–4738 (1994).
DePaolo, D. J. Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. Geochim. Cosmochim. Acta 44, 1185–1196 (1980).
Jacobsen, S. B. Isotopic and chemical constraints on mantle–crust evolution. Geochim. Cosmochim. Acta 52, 1341–1350 (1988).
Cawood, P. A., Hawkesworth, C. J. & Dhuime, B. The continental record and the generation of continental crust. Geol. Soc. Am. Bull. 125, 14–32 (2013).
O’Nions, R. K., Evensen, N. M. & Hamilton, P. J. Geochemical modeling of mantle differentiation and crustal growth. J. Geophys. Res. Solid Earth 84, 6091–6101 (1979).
Burkhardt, C., Hin, R. C., Kleine, T. & Bourdon, B. Evidence for Mo isotope fractionation in the solar nebula and during planetary differentiation. Earth Planet. Sci. Lett. 391, 201–211 (2014).
Liang, Y.-H. et al. Molybdenum isotope fractionation in the mantle. Geochim. Cosmochim. Acta 199, 91–111 (2017).
Voegelin, A. R., Pettke, T., Greber, N. D., von Niederhäusern, B. & Nägler, T. F. Magma differentiation fractionates Mo isotope ratios: evidence from the Kos Plateau Tuff (Aegean Arc). Lithos 190–191, 440–448 (2014).
Yang, J. et al. The molybdenum isotopic compositions of I-, S- and A-type granitic suites. Geochim. Cosmochim. Acta 205, 168–186 (2017).
Greber, N. D., Pettke, T. & Nägler, T. F. Magmatic–hydrothermal molybdenum isotope fractionation and its relevance to the igneous crustal signature. Lithos 190–191, 104–110 (2014).
Hin, R. C., Burnham, A. D., Gianolio, D., Walter, M. J. & Elliott, T. Molybdenum isotope fractionation between Mo4+ and Mo6+ in silicate liquid and metallic Mo. Chem. Geol. 504, 177–189 (2019).
Greber, N. D., Puchtel, I. S., Nägler, T. F. & Mezger, K. Komatiites constrain molybdenum isotope composition of the Earth’s mantle. Earth Planet. Sci. Lett. 421, 129–138 (2015).
Willbold, M. & Elliott, T. Molybdenum isotope variations in magmatic rocks. Chem. Geol. 449, 253–268 (2017).
Freymuth, H., Vils, F., Willbold, M., Taylor, R. N. & Elliott, T. Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc. Earth Planet. Sci. Lett. 432, 176–186 (2015).
Gaschnig, R. M. et al. The molybdenum isotope system as a tracer of slab input in subduction zones: an example from Martinique, Lesser Antilles arc. Geochem. Geophys. Geosyst. 18, 4674–4689 (2017).
König, S., Wille, M., Voegelin, A. & Schoenberg, R. Molybdenum isotope systematics in subduction zones. Earth Planet. Sci. Lett. 447, 95–102 (2016).
Bezard, R., Fischer-Gödde, M., Hamelin, C., Brennecka, G. A. & Kleine, T. The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of mid-ocean ridge basalts. Earth Planet. Sci. Lett. 453, 171–181 (2016).
Sossi, P. A. et al. Petrogenesis and geochemistry of Archean komatiites. J. Petrol. 57, 147–184 (2016).
Kerr, A. C. et al. The petrogenesis of Gorgona komatiites, picrites and basalts: new field, petrographic and geochemical constraints. Lithos 37, 245–260 (1996).
Starkey, N. A. et al. Helium isotopes in early Iceland plume picrites: constraints on the composition of high 3He/4He mantle. Earth Planet. Sci. Lett. 277, 91–100 (2009).
McCoy-West, A. J., Godfrey Fitton, J., Pons, M.-L., Inglis, E. C. & Williams, H. M. The Fe and Zn isotope composition of deep mantle source regions: insights from Baffin Island picrites. Geochim. Cosmochim. Acta 238, 542–562 (2018).
Leitzke, F. P. et al. Redox dependent behaviour of molybdenum during magmatic processes in the terrestrial and lunar mantle: implications for the Mo/W of the bulk silicate Moon. Earth Planet. Sci. Lett. 474, 503–515 (2017).
McCoy-West, A. J., Bennett, V. C., O’Neill, H. S. C., Hermann, J. & Puchtel, I. S. The interplay between melting, refertilization and carbonatite metasomatism in off-cratonic lithospheric mantle under Zealandia: an integrated major, trace and platinum group element study. J. Petrol. 56, 563–604 (2015).
Puchtel, I. S. et al. Petrology of a 2.41 Ga remarkably fresh komatiitic basalt lava lake in Lion Hills, central Vetreny Belt, Baltic Shield. Contrib. Mineral. Petrol. 124, 273–290 (1996).
Keppler, H. & Wyllie, P. J. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O−HCl and haplogranite-H2O−HF. Contrib. Mineral. Petrol. 109, 139–150 (1991).
Keller, B. & Schoene, B. Plate tectonics and continental basaltic geochemistry throughout Earth history. Earth Planet. Sci. Lett. 481, 290–304 (2018).
Kleine, T. & Walker, R. J. Tungsten isotopes in planets. Annu. Rev. Earth Planet. Sci. 45, 389–417 (2017).
McDonough, W. F. in Treatise on Geochemistry 1st edn, Vol. 2 (eds Holland, H. D. & Turekian, K. K.) 547–568 (Elsevier, 2003).
Hin, R. C., Burkhardt, C., Schmidt, M. W., Bourdon, B. & Kleine, T. Experimental evidence for Mo isotope fractionation between metal and silicate liquids. Earth Planet. Sci. Lett. 379, 38–48 (2013).
Savage, P. S. et al. Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation. Geochem. Perspect. Lett. 1, 53–64 (2015).
McCoy-West, A. J., Millet, M.-A. & Burton, K. W. The neodymium stable isotope composition of the silicate Earth and chondrites. Earth Planet. Sci. Lett. 480, 121–132 (2017).
Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).
Jacobson, S. A. et al. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508, 84–87 (2014).
Jahn, B.-M., Gruau, G. & Glikson, A. Y. Komatiites of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Nd age and mantle evolution. Contrib. Mineral. Petrol. 80, 25–40 (1982).
Neely, R. A. et al. Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland. Earth Planet. Sci. Lett. 486, 108–118 (2018).
O’Neill, H. S. C. & Eggins, S. M. The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts. Chem. Geol. 186, 151–181 (2002).
Hibbert, K. E. J., Williams, H. M., Kerr, A. C. & Puchtel, I. S. Iron isotopes in ancient and modern komatiites: evidence in support of an oxidised mantle from Archean to present. Earth Planet. Sci. Lett. 321–322, 198–207 (2012).
Nicklas, R. W. et al. Secular mantle oxidation across the Archean-Proterozoic boundary: evidence from V partitioning in komatiites and picrites. Geochim. Cosmochim. Acta 250, 49–75 (2019).
Moyen, J.-F. & Laurent, O. Archaean tectonic systems: a view from igneous rocks. Lithos 302–303, 99–125 (2018).
Dhuime, B., Wuestefeld, A. & Hawkesworth, C. J. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8, 552–555 (2015).
Tang, M., Chen, K. & Rudnick, R. L. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351, 372–375 (2016).
Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).
O’Neill, C., Debaille, V. & Griffin, W. Deep earth recycling in the Hadean and constraints on surface tectonics. Am. J. Sci. 313, 912–932 (2013).
Chowdhury, P., Gerya, T. & Chakraborty, S. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth. Nat. Geosci. 10, 698–703 (2017).
Johnson, T. E., Brown, M., Kaus, B. J. P. & VanTongeren, J. A. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat. Geosci. 7, 47–52 (2013).
Kerr, A. C. La Isla de Gorgona, Colombia: a petrological enigma? Lithos 84, 77–101 (2005).
Rudge, J. F., Reynolds, B. C. & Bourdon, B. The double spike toolbox. Chem. Geol. 265, 420–431 (2009).
Willbold, M. et al. High-precision mass-dependent molybdenum isotope variations in magmatic rocks determined by double-spike MC-ICP-MS. Geostand. Geoanal. Res. 40, 389–403 (2016).
Greber, N. D., Siebert, C., Nägler, T. F. & Pettke, T. δ98/95Mo values and molybdenum concentration data for NIST SRM 610, 612 and 3134: towards a common protocol for reporting Mo data. Geostand. Geoanal. Res. 36, 291–300 (2012).
Goldberg, T. et al. Resolution of inter-laboratory discrepancies in Mo isotope data: an intercalibration. J. Anal. At. Spectrom. 28, 724–735 (2013).
Creech, J. B. & Paul, B. IsoSpike: improved double-spike inversion software. Geostand. Geoanal. Res. 39, 7–15 (2015).
Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508–2518 (2011).
Li, Y. et al. Controlling mechanisms for molybdenum isotope fractionation in porphyry deposits: the Qulong example. Econ. Geol. 114, 981–992 (2019).
Zhao, P.-P. et al. Molybdenum mass fractions and isotopic compositions of international geological reference materials. Geostand. Geoanal. Res. 40, 217–226 (2015).
Yang, J. et al. Absence of molybdenum isotope fractionation during magmatic differentiation at Hekla volcano, Iceland. Geochim. Cosmochim. Acta 162, 126–136 (2015).
Jacobsen, S. B. & Wasserburg, G. J. The mean age of mantle and crustal reservoirs. J. Geophys. Res. Solid Earth 84, 7411–7427 (1979).
Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).
Acknowledgements
We thank D. Selby for access to carius tube facilities. This project was funded by a European Research Council Starting Grant (‘HabitablePlanet’ 306655) to H.M.W. and a NERC Grant (NE/M0003/1) to K.W.B. While at Monash A.J.M.-W., P.C. and P.A.C. were supported by ARC grant FL160100168.
Author information
Authors and Affiliations
Contributions
A.J.M.-W., K.W.B. and H.M.W. conceived the study. A.J.M.-W. undertook the chemistry and mass spectrometry with assistance from G.M.N. J.G.F., A.C.K. and P.S. provided the samples. A.J.M.-W. and P.C. developed the mass balance modelling. A.M.W. and P.S. developed the Mo isotope partial melting model. A.J.M.-W. wrote the paper, while all the authors contributed to discussions on early crustal volumes and editing the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Journal peer review information Primary handling editor(s): Melissa Plail; James Super.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary text, Figs. 1–11 and Tables 1–10.
Rights and permissions
About this article
Cite this article
McCoy-West, A.J., Chowdhury, P., Burton, K.W. et al. Extensive crustal extraction in Earth’s early history inferred from molybdenum isotopes. Nat. Geosci. 12, 946–951 (2019). https://doi.org/10.1038/s41561-019-0451-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-019-0451-2
This article is cited by
-
Philippine Sea plate and surrounding magmatism reveal the Antarctic-Zealandia, Pacific, and Indian mantle domain boundaries
Communications Earth & Environment (2024)
-
Molybdenum isotope composition of the upper mantle and its origin: insight from mid-ocean ridge basalt
Journal of Oceanology and Limnology (2024)
-
Phosphorus availability on the early Earth and the impacts of life
Nature Geoscience (2023)
-
An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean
Nature Communications (2020)