Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reduced continental weathering and marine calcification linked to late Neogene decline in atmospheric CO2

Abstract

The globally averaged calcite compensation depth has deepened by several hundred metres in the past 15 Myr. This deepening has previously been interpreted to reflect increased alkalinity supply to the ocean driven by enhanced continental weathering due to the Himalayan orogeny during the late Neogene period. Here we examine mass accumulation rates of the main marine calcifying groups and show that global accumulation of pelagic carbonates has decreased from the late Miocene epoch to the late Pleistocene epoch even though CaCO3 preservation has improved, suggesting a decrease in weathering alkalinity input to the ocean, thus opposing expectations from the Himalayan uplift hypothesis. Instead, changes in relative contributions of coccoliths and planktonic foraminifera to the pelagic carbonates in relative shallow sites, where dissolution has not taken its toll, suggest that coccolith production in the euphotic zone decreased concomitantly with the reduction in weathering alkalinity inputs as registered by the decline in pelagic carbonate accumulation. Our work highlights a mechanism whereby, in addition to deep-sea dissolution, changes in marine calcification acted to modulate carbonate compensation in response to reduced weathering linked to the late Neogene cooling and decline in atmospheric partial pressure of carbon dioxide.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Deep-sea sites plotted with gridded seafloor %CaCO3 (ref. 40).
Fig. 2: Changes in MARc in the Pacific and Atlantic oceans.
Fig. 3: Improved preservation of foraminifera in the western equatorial Pacific.
Fig. 4: Changes in MARc, MAR-foram and MAR-coccolith.
Fig. 5: Proposed conceptual model for changes in carbonate production, dissolution and accumulation in the late Neogene.

Data availability

The data that support the findings of this study are available within the supplementary information files.

References

  1. 1.

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article  Google Scholar 

  2. 2.

    Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    Article  Google Scholar 

  3. 3.

    Rowley, D. B. Rate of plate creation and destruction: 180 Ma to present. Geol. Soc. Am. Bull. 114, 927–933 (2002).

    Article  Google Scholar 

  4. 4.

    Raymo, M. E., Ruddiman, W. F. & Froelich, P. N. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16, 649–653 (1988).

    Article  Google Scholar 

  5. 5.

    Raymo, M. E. Geochemical evidence supporting TC Chamberlin’s theory of glaciation. Geology 19, 344–347 (1991).

    Article  Google Scholar 

  6. 6.

    Berner, R. A. & Caldeira, K. The need for mass balance and feedback in the geochemical carbon cycle. Geology 25, 955–956 (1997).

    Article  Google Scholar 

  7. 7.

    Walker, J. C., Hays, P. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86, 9776–9782 (1981).

    Article  Google Scholar 

  8. 8.

    Berelson, W. M. et al. Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: a revised global carbonate budget. Glob. Biogeochem. Cycles 21, GB1024 (2007).

    Article  Google Scholar 

  9. 9.

    Dunne, J. P., Hales, B. & Toggweiler, J. R. Global calcite cycling constrained by sediment preservation controls. Glob. Biogeochem. Cycles 26, GB3023 (2012).

    Article  Google Scholar 

  10. 10.

    Milliman, J. D. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Glob. Biogeochem. Cycles 7, 927–957 (1993).

    Article  Google Scholar 

  11. 11.

    Cai, W. et al. A comparative overview of weathering intensity and HCO3-flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi rivers. Cont. Shelf Res. 28, 1538–1549 (2008).

    Article  Google Scholar 

  12. 12.

    Broecker, W. S. A kinetic model for the chemical composition of sea water. Quat. Res. 1, 188–207 (1971).

    Article  Google Scholar 

  13. 13.

    Van Andel, T. H. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet. Sci. Lett. 26, 187–194 (1975).

    Article  Google Scholar 

  14. 14.

    Boudreau, B. P., Middelburg, J. J. & Luo, Y. The role of calcification in carbonate compensation. Nat. Geosci. 11, 894–900 (2018).

    Article  Google Scholar 

  15. 15.

    Suchéras-Marx, B. & Henderiks, J. Downsizing the pelagic carbonate factory: impacts of calcareous nannoplankton evolution on carbonate burial over the past 17 million years. Glob. Planet. Change 123, 97–109 (2014).

    Article  Google Scholar 

  16. 16.

    Lyle, M. Neogene carbonate burial in the Pacific Ocean. Paleoceanography 18, 1059 (2003).

    Article  Google Scholar 

  17. 17.

    Pälike, H. et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609–614 (2012).

    Article  Google Scholar 

  18. 18.

    Diester-Haass, L., Meyers, P. A. & Bickert, T. Carbonate crash and biogenic bloom in the late Miocene: evidence from ODP sites 1085, 1086, and 1087 in the Cape Basin, southeast Atlantic Ocean. Paleoceanography 19, PA1007 (2004).

    Article  Google Scholar 

  19. 19.

    Haug, G. H. & Tiedemann, R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393, 673–676 (1998).

    Article  Google Scholar 

  20. 20.

    Broecker, W. S. & Clark, E. CaCO3 size distribution: a paleocarbonate ion proxy? Paleoceanography 14, 596–604 (1999).

    Article  Google Scholar 

  21. 21.

    Chiu, T. C. & Broecker, W. S. Toward better paleocarbonate ion reconstructions: new insights regarding the CaCO3 size index. Paleoceanography 23, PA2216 (2008).

    Article  Google Scholar 

  22. 22.

    Bassinot, F. C. et al. Coarse fraction fluctuations in pelagic carbonate sediments from the tropical Indian Ocean: a 1500-kyr record of carbonate dissolution. Paleoceanogr. Paleoclimatol. 9, 579–600 (1994).

    Article  Google Scholar 

  23. 23.

    Farrell, J. W. & Prell, W. L. Pacific CaCO3 preservation and δ18O since 4 Ma: paleoceanic and paleoclimatic implications. Paleoceanography 6, 485–498 (1991).

    Article  Google Scholar 

  24. 24.

    Honjo, S., Manganini, S. J., Krishfield, R. A. & Francois, R. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog. Oceanogr. 76, 217–285 (2008).

    Article  Google Scholar 

  25. 25.

    Campbell, S. M., Moucha, R., Derry, L. A. & Raymo, M. E. Effects of dynamic topography on the Cenozoic carbonate compensation depth. Geochem. Geophys. Geosyst. 19, 1025–1034 (2018).

    Article  Google Scholar 

  26. 26.

    Shipboard Scientific Party. Site 747. In Proc. ODP, Init. Repts vol. 120 (eds Schlich, R. et al.) 89–156 (Ocean Drilling Program, 1989).

  27. 27.

    Holland, H. D. Sea level, sediments and the composition of seawater. Am. J. Sci. 305, 220–239 (2005).

    Article  Google Scholar 

  28. 28.

    Tipper, E. T. et al. The short term climatic sensitivity of carbonate and silicate weathering fluxes: insight from seasonal variations in river chemistry. Geochim. Cosmochim. Acta 70, 2737–2754 (2006).

    Article  Google Scholar 

  29. 29.

    Clift, P. D. et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat. Geosci. 1, 875–880 (2008).

    Article  Google Scholar 

  30. 30.

    Misra, S. & Froelich, P. N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818–823 (2012).

    Article  Google Scholar 

  31. 31.

    Kump, L. R. & Arthur, M. A. in Tectonic Uplift and Climate Change (ed. Ruddiman, W. F.) Ch. 18 (Plenum Press, 1997).

  32. 32.

    Broecker, W. S. A need to improve reconstructions of the fluctuations in the calcite compensation depth over the course of the Cenozoic. Paleoceanography 23, PA1204 (2008).

    Article  Google Scholar 

  33. 33.

    Hannisdal, B., Henderiks, J. & Liow, L. H. Long-term evolutionary and ecological responses of calcifying phytoplankton to changes in atmospheric CO2. Glob. Change Biol. 18, 3504–3516 (2012).

    Article  Google Scholar 

  34. 34.

    Bolton, C. T. & Stoll, H. M. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500, 558–562 (2013).

    Article  Google Scholar 

  35. 35.

    Bolton, C. T. et al. Decrease in coccolithophore calcification and CO2 since the middle Miocene. Nat. Commun. 7, 10284 (2016).

    Article  Google Scholar 

  36. 36.

    Aubry, M.-P. in Large Ecosystem Perturbations: Causes and Consequences (eds Monechi S. et al.) 25–51 (Geological Society of America, 2007).

  37. 37.

    Zhang, Y. G., Pagani, M., Henderiks, J., Ren, H. J. E. & Letters, P. S. A long history of equatorial deep-water upwelling in the Pacific Ocean. Earth Planet. Sci. Lett. 467, 1–9 (2017).

    Article  Google Scholar 

  38. 38.

    Lyle, M. & Baldauf, J. Biogenic sediment regimes in the Neogene equatorial Pacific, IODP site U1338: burial, production, and diatom community. Palaeogeogr. Palaeoclimatol. Palaeoecol. 433, 106–128 (2015).

    Article  Google Scholar 

  39. 39.

    Boyd, P. W. Beyond ocean acidification. Nat. Geosci. 4, 273–274 (2011).

    Article  Google Scholar 

  40. 40.

    Archer, D. E. An atlas of the distribution of calcium carbonate in sediments of the deep sea. Glob. Biogeochem. Cycles 10, 159–174 (1996).

    Article  Google Scholar 

  41. 41.

    Schlitzer, R. Ocean Data View v5.1.0 (2018); https://odv.awi.de

  42. 42.

    Berger, W. H., Bonneau, M. C. & Parker, F. L. Foraminifera on the deep-sea floor: lysocline and dissolution rate. Oceanol. Acta 5, 249–258 (1982).

    Google Scholar 

  43. 43.

    Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G. (eds) The Geologic Time Scale 2012 (Elsevier, 2012)..

  44. 44.

    Baumann, K.-H., Böckel, B. & Frenz M. in Coccolithophores: From Molecular Processes to Global Impact (eds Thierstein, H. R. & Young, J. R.) 367–402 (Springer-Verlag, 2004).

Download references

Acknowledgements

We thank M.-P. Aubry for discussion on coccolithophorid taxonomy and evolution, D. Bord for help with nanno-biostratigraphy and the age model, R. Toggweiler for carbonate burial in modern oceans, and X. Zhou for ICP-OES analysis. This work has been partially supported by NSF-OCE grant 634573 to Y.R.

Author information

Affiliations

Authors

Contributions

W.S. and Y.R. conceived the idea of a global synthesis of late Neogene mass accumulation rate on pelagic carbonate, foraminifera and coccoliths. W.S. performed the experiments and produced the figures. Both authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Weimin Si.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor(s): James Super; Rebecca Neely.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussions, tables and figures.

Supplementary Table 1

Age model data.

Supplementary Table 2

Carbonate mass accumulation rate records.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Si, W., Rosenthal, Y. Reduced continental weathering and marine calcification linked to late Neogene decline in atmospheric CO2. Nat. Geosci. 12, 833–838 (2019). https://doi.org/10.1038/s41561-019-0450-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing