Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides


Anthropogenic changes to the environment can enhance earthquake-triggered landslides, yet their role in earthquake disasters is often overlooked. Co-seismic landslides frequently involve liquefaction of granular materials, a process that reduces shear strength and facilitates downslope motion even on gentle slopes. Irrigation systems can increase liquefaction susceptibility and compromise otherwise stable slopes. Here we investigate devastating landslides that affected Palu, Indonesia, during the 28 September 2018 earthquake of moment magnitude 7.5. We document fields and buildings translated over 1 km down slopes of <2° and show that landslides were limited to irrigated ground. A liquefied detachment was rooted upslope in a conveyance canal that supplied water to the irrigation network. A strong correlation between landslide displacement, irrigation infrastructure and the highest slopes (≥1.5°) suggests a causative mechanism that should provoke urgent assessment of gently sloping irrigated terrain elsewhere in Sulawesi and in tectonically active areas worldwide.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regional context and overview.

Base map in a adapted from Natural Earth ( In b,c, base digital elevation model derived from 12.5 m TanDEM-X topographic data, German Aerospace Center (DLR) e.V., Microwaves and Radar Institute, Pol-InSAR. In c, 2018 surface rupture data adapted from ref. 21, Springer Nature Ltd

Fig. 2: Landslides and irrigation, eastern Palu valley.

Base images in bd, ©2018 Google and DigitalGlobe

Fig. 3: Structural maps of two representative landslides.
Fig. 4: Landslide displacement and controlling parameters.

In b, slope raster derived from 12.5 m TanDEM-X topographic data, German Aerospace Center (DLR) e.V., Microwaves and Radar Institute, Pol-InSAR

Data availability

Geospatial data generated during this project, including landslide displacement measurements, liquefaction indicators and digitised irrigation infrastructure, are available at The post-earthquake satellite scene is available via Google Earth, at, and via DigitalGlobe at Sentinel 2B data can be downloaded from the Copernicus Open Access Hub: TanDEM-X 90 m data can be downloaded via the German Aerospace Centre:, and the application page for ~12 m data is = TDM-Proposal-Submission-Procedure.


  1. Bilham, R. Lessons from the Haiti earthquake. Nature 463, 878–879 (2010).

    Article  Google Scholar 

  2. Holzer, L. T. & Savage, J. C. Global earthquake fatalities and population. Earthq. Spectra 29, 155–175 (2013).

    Article  Google Scholar 

  3. Marano, K. D., Wald, D. J. & Allen, T. I. Global earthquake casualties due to secondary effects: a quantitative analysis for improving rapid loss analyses. Nat. Hazards 52, 319–328 (2010).

    Article  Google Scholar 

  4. Alcántara-Ayala, I., Esteban-Chávez, O. & Parrot, J. F. Landsliding related to land-cover change: a diachronic analysis of hillslope instability distribution in the Sierra Norte, Puebla, Mexico. Catena 65, 152–165 (2006).

    Article  Google Scholar 

  5. Pisano, L. et al. Variations in the susceptibility to landslides, as a consequence of land cover changes: a look to the past, and another towards the future. Sci. Total Environ. 601–602, 1147–1159 (2017).

    Article  Google Scholar 

  6. Sangelantoni, L., Gioia, E. & Marincioni, F. Impact of climate change on landslides frequency: the Esino river basin case study (Central Italy). Nat. Hazards 93, 849–884 (2018).

    Article  Google Scholar 

  7. Barnard, P. L., Owen, L. A., Sharma, M. C. & Finkel, R. C. Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology 40, 21–35 (2001).

    Article  Google Scholar 

  8. Hearn, G. J. & Shakya, N. M. Engineering challenges for sustainable road access in the Himalayas. Q. J. Eng. Geol. Hydrogeol. 50, 69–80 (2017).

    Article  Google Scholar 

  9. Zhang, D., Wang, D., Luo, C., Chen, J. & Zhou, Y. A rapid loess flowslide triggered by irrigation in China. Landslides 6, 55–60 (2009).

    Article  Google Scholar 

  10. Tanyas, H. et al. Presentation and analysis of a worldwide database of earthquake-induced landslideinventories. J. Geophys. Res. Earth Surf. 122, 1991–2015 (2017).

    Article  Google Scholar 

  11. Owen, L. A. et al. Landslides triggered by the October 8, 2005, Kashmir earthquake. Geomorphology 94, 1–9 (2008).

    Article  Google Scholar 

  12. Keefer, D. K. Investigating landslide caused by earthquakes—a historical review. Surv. Geophys. 23, 473–510 (2002).

    Article  Google Scholar 

  13. Bellier, O. et al. High slip rate for a low seismicity along the Palu-Koro active fault in central Sulawesi (Indonesia). Terra Nova 13, 463–470 (2001).

    Article  Google Scholar 

  14. Socquet, A. et al. Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data. J. Geophys. Res. 111, B08409 (2006).

    Google Scholar 

  15. Thein, P. S. et al. Site response characteristics of H/V spectrum by microtremor single station observations at Palu city, Indonesia. J. SE Asian Appl. Geol. 5, 1–9 (2013).

    Google Scholar 

  16. Cipta, A. et al. in Geohazards in Indonesia: Earth Science for Disaster Risk Reduction (eds Cummins, P. R. & Meilano, I.) 133–152 (Geological Society, 2017).

  17. Watkinson, I. M. & Hall, R. in Geohazards in Indonesia: Earth Science for Disaster Risk Reduction (eds Cummins, P. R. & Meilano, I.) 71–120 (Geological Society, 2017).

  18. Metzner, J. Palu(Sulawesi) Palu (Sulawesi) problems of land utilisation in a climatic dry valley on the equator. Erdkunde 35, 42–54 (1981).

  19. Pelinovsky, E., Yuliadi, D., Prasetya, G. & Hidayat, R. The 1996 Sulawesi tsunami. Nat. Hazards 16, 29–38 (1997).

    Article  Google Scholar 

  20. Sutapa, I. W. & Galib, I. M. Application of non-parametric test to detect trend rainfall in Palu watershed, Central Sulawesi, Indonesia. Int. J. Hydrol. Sci. Technol. 6, 238–253 (2016).

    Article  Google Scholar 

  21. Socquet, A., Hollingsworth, J., Pathier, E. & Bouchon, M. Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nat. Geosci. 12, 192–199 (2019).

    Article  Google Scholar 

  22. Bao, H. et al. Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nat. Geosci. 12, 200–205 (2019).

    Article  Google Scholar 

  23. Situation Update No.15—Final. M7.4 Earthquake & Tsunami Sulawesi, Indonesia (ASEAN Coordinating Centre for Humanitarian Assistance on Disaster Management, accessed 25 November 2018);

  24. Weber, R., Kreisel, W. & Faust, H. Colonial Interventions on the cultural landscape of Central Sulawesi by “ethical policy”: the impact of the Dutch rule in Palu and Kulawi valley, 1905–1942. Asian J. Soc. Sci. 31, 398–434 (2003).

    Article  Google Scholar 

  25. Keil, A., Zeller, M., Wida, A., Sanim, B. & Birner, R. What determines farmers’ resilience towards ENSO-related drought? An empirical assessment in Central Sulawesi, Indonesia. Clim. Change 86, 291–307 (2008).

    Article  Google Scholar 

  26. Hamilton, W. in Professional Paper 1078 (US Geological Survey, 1979).

  27. Dunbar, P. K., Lockridge, P. A. & Whiteside, L. S. Catalog of Significant Earthquakes 2150 B.C.–1991 A.D (National Geophysical Data Center, 1992).

  28. Hamzah, L., Puspito, N. T. & Imamura, F. Tsunami catalog and zones in Indonesia. J. Nat. Disaster Sci. 22, 25–43 (2000).

    Article  Google Scholar 

  29. Prasetya, G. S., de Lange, W. P. & Healy, T. R. The Makassar Strait tsunamigenic region, Indonesia. Nat. Hazards 24, 295–307 (2001).

    Article  Google Scholar 

  30. Varnes, D. J. in Landslides, Analysis and Control Special Report 176 (eds Schuster, R. L. & Krizek, R. J.) 11–33 (Transport Research Board, National Academy of Sciences, 1978).

  31. Youd, T. L. & Garris, C. T. Liquefaction-induced ground-surface disruption. J. Geotechnol. Eng. 121, 805–809 (1995).

    Article  Google Scholar 

  32. Bartlett, S. F. & Youd, T. L. Empirical Analysis of Horizontal Ground Displacement Generated by Liquefaction-induced Lateral Spreads (National Centre for Earthquake Research, 1992).

  33. Glass, C. E. Interpreting Aerial Photographs to Identify Natural Hazards (Elsevier, 2013).

  34. Imtiyaz A. Parvez & Rosset, P. in Earthquake Hazard, Risk and Disasters (ed. Wyss, M.) 273–304 (Elsevier, 2014).

  35. Youd, L. T. in International Handbook of Earthquake and Engineering Seismology (eds Lee, W. H. K. et al.) 1159–1173 (Academic Press, 2003).

  36. Sukamto, R. et al. Reconnaissance Geological Map of the Palu Quadrangle, Sulawesi (Geological Research and Development Centre, 1973).

  37. van Leeuwen, T. M. & Muhardjo Stratigraphy and tectonic setting of the Cretaceous and Paleogene volcanic–sedimentary successions in northwest Sulawesi, Indonesia: implications for the Cenozoic evolution of Western and Northern Sulawesi. J. Asian Earth Sci. 25, 481–511 (2005).

    Article  Google Scholar 

  38. Iverson, R. M. et al. Landslide mobility and hazards: implications of the 2014 Oso disaster. Earth Planet. Sci. Lett. 412, 197–208 (2015).

    Article  Google Scholar 

  39. Moayedi, H. et al. Preventing landslides in times of rainfall: case study and FEM analyses. Disaster Prev. Manag. 20, 115–124 (2011).

    Article  Google Scholar 

  40. Bolton Seed, H. & Wilson, S. D. The Turnagain Heights landslide, Anchorage. Alask. J. Soil Mech. Found. Div. 93, 325–353 (1967).

    Google Scholar 

  41. Derbyshire, E., Meng, X. M. & Dijkstra, T. A. Landslides in the Thick Loess Terrain of North-West China (Wiley, Chichester, 2000).

  42. Ishihara, K. et al. Geotechnical aspects of the June 20, 1990 Manjil earthquake in Iran. Soils Found. 32, 61–78 (1992).

    Article  Google Scholar 

  43. Evans, S. G. et al. Landslides triggered by the 1949 Khait earthquake, Tajikistan, and associated loss of life. Eng. Geol. 109, 195–212 (2009).

    Article  Google Scholar 

  44. Ishihara, K., Okusa, S., Oyagi, N. & Ischuk, A. Liquefaction-induced flow slide in the collapsible loess deposit in Soviet Tajik. Soils Found. 30, 73–89 (1990).

    Article  Google Scholar 

  45. Sato, S., Yamaji, E. & Kuroda, T. Strategies and engineering adaptions to disseminate SRI methods in large-scale irrigation systems in Eastern Indonesia. Paddy Water Environ. 9, 79–88 (2011).

    Article  Google Scholar 

  46. Naing, M. M. in Proceedings of the Regional Workshop on the Future of Large Rice-Based Irrigation Systems in Southeast Asia 120–130 (Vietnam Institute for Water Resources Research, 2005).

  47. Mukherji, A. et al. Revitalizing Asia’s Irrigation: To Sustainably Meet Tomorrow’s Food Needs (International Water Management Institute & Food and Agriculture Organization of the United Nations, 2009).

  48. 201809281002AMinahassa Peninsula, SUL (Global Centroid-Moment-Tensor Project, accessed 25 November 2018);

  49. Dziewonski, A. M., Chou, T.-A. & Woodhouse, J. H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. 86, 2825–2852 (1981).

    Article  Google Scholar 

  50. Ekström, G., Nettles, M. & Dziewonski, A. M. The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200–201, 1–9 (2012).

    Article  Google Scholar 

  51. Digital Globe (Digital Globe, 2018);

  52. Sheppard, S. R. J. & Cizek, P. The ethics of Google Earth: crossing thresholds from spatial data to landscape visualisation. J. Environ. Manag. 90, 2102–2117 (2009).

    Article  Google Scholar 

  53. Sentinel Online (ESA, 2018);

  54. Hajnsek, I. et al. TanDEM-X: TanDEM-X Digital Elevation Models Announcement of Opportunity; TD-PD-AO-0033 (German Aerospace Center, Microwaves and Radar Institute, 2016).

  55. Potere, D. Horizontal positional accuracy of Google Earth’s high-resolution imagery archive. Sensors 8, 7973–7981 (2008).

    Article  Google Scholar 

  56. Mohammed, N. Z., Ghazi, A. & Mustafa, H. E. Positional accuracy testing of Google Earth. Int. J. Multidiscipl. Sci. Eng. 4, 6–9 (2013).

    Google Scholar 

  57. Pulighe, G., Baiocchi, V. & Lupia, F. Horizontal accuracy assessment of very high resolution Google Earth images in the city of Rome, Italy. Int. J. Digit. Earth 9, 342–362 (2016).

    Article  Google Scholar 

  58. Benker, S. C., Langford, R. P. & Pavilis, T. L. Positional accuracy of the Google Earth terrain model derived from stratigraphic unconformities in the Big Bend region, Texas, USA. Geocarto Int. 26, 1–13 (2011).

    Article  Google Scholar 

  59. Youssef, A. M., Maerz, N. H. & Hassan, A. M. Remote sensing applications to geological problems in Egypt: case study, slope instability investigation, Sharm El-Sheikh/Ras-Nasrani area, southern Sinai. Landslides 6, 353–360 (2009).

    Article  Google Scholar 

  60. Stumpf, A., Lampert, T. A., Malet, J.-P. & Kerle, N. Multi-scale line detection for landslide fissure mapping. In Proc. IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012).

  61. Parise, M. Observation of surface features on an active landslide, and implications for understanding its history of movement. Nat. Hazards Earth Syst. Sci. 3, 569–580 (2003).

    Article  Google Scholar 

  62. Stumpf, A., Malet, J.-P., Kerle, N., Niethammer, U. & Rothmund, S. Image-based mapping of surface fissures for the investigation of landslide dynamics. Geomorphology 186, 12–27 (2013).

    Article  Google Scholar 

  63. Fleming, R. W. & Johnson, A. M. Structures associated with strike-slip faults that bound landslide elements. Eng. Geol. 27, 39–114 (1989).

    Article  Google Scholar 

  64. Krauskopf, K. B., Feitler, S. & Griggs, A. B. Structural features of a landslide near Gilroy, California. J. Geol. 47, 630–648 (1939).

    Article  Google Scholar 

  65. Stumpf, A., Malet, J.-P., Puissant, A. & Travelletti, J. in Land Surface Remote Sensing and Risks (eds Baghdadi, N. & Zribi, M.) 147–190 (Elsevier, 2016).

  66. Avouac, J.-P., Ayoub, F., Leprince, S., Konca, O. & Helmberger, D. V. The 2005 Mw 7.6 Kashmir earthquake: sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth Planet. Sci. Lett. 249, 514–528 (2006).

    Article  Google Scholar 

  67. Tamkuan, N. & Nagai, M. Fusion of multi-temporal interferometric coherence and optical image data for the 2016 Kumamoto earthquake damage assessment. ISPRS Int. J. Geoinfo. 6, 188 (2017).

    Article  Google Scholar 

  68. Sims, J. D. & Garvin, C. D. Recurrent liquefaction induced by the 1989 Loma Prieta earthquake and 1990 and 1991 aftershocks: implications for paleoseismicity studies. Bull. Seismol. Soc. Am. 85, 51–65 (1995).

    Google Scholar 

  69. Cubrinovski, M. et al. Liquefaction effects and associated damages observed at the Wellington CenrePort from the 2016 Kaikoura earthquake. Bull. N. Z. Soc. Earthq. Eng. 50, 152–173 (2017).

    Google Scholar 

  70. Quigley, M. C., Bastin, S. & Bradley, B. A. Recurrent liquefaction in Christchurch, New Zealand, during the Canterbury earthquake sequence. Geology 41, 419–422 (2013).

    Article  Google Scholar 

  71. Wotherspoon, L. M., Pender, M. J. & Orense, R. P. Relationship between observed liquefaction at Kaiapoi following the 2010 Darfield earthquake and former channels of the Waimakariri River. Eng. Geol. 125, 45–55 (2012).

    Article  Google Scholar 

  72. Cubrinovski, M. et al. Soil liquefaction effects in the Central Business District during the February 2011 Christchurch Earthquake. Seis. Res. Lett. 82, 893–904 (2011).

    Article  Google Scholar 

  73. Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psych. 24, 417–441 (1933).

    Article  Google Scholar 

  74. Sharma, S. K., Gajbhiye, S. & Tignath, S. Application of principal component analysis in grouping geomorphic parameters of a watershed for hydrological modelling. Appl. Water Sci. 5, 89–96 (2015).

    Article  Google Scholar 

  75. Qi, J. et al. A modified soil adjusted vegetation index. Remote. Sens. Environ. 48, 119–126 (1994).

    Article  Google Scholar 

Download references


We are grateful to the TanDEM-X Science Communication Team (German Aerospace Center (DLR)) for providing the TanDEM-X topographic data.

Author information

Authors and Affiliations



I.M.W. carried out the satellite image interpretation, wrote the manuscript and created the figures. R.H. contributed to image interpretation, worked on image georeferencing, processed the TanDEM elevation model and commented on the manuscript.

Corresponding author

Correspondence to Ian M. Watkinson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, figures and tables.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watkinson, I.M., Hall, R. Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides. Nat. Geosci. 12, 940–945 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing