Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The susceptibility of Oklahoma’s basement to seismic reactivation

Abstract

Recent widespread seismicity in Oklahoma is attributed to the reactivation of pre-existing, critically stressed and seismically unstable faults due to decades of wastewater injection. However, the structure and properties of the reactivated faults remain concealed by the sedimentary cover. Here, we explore the major ingredients needed to induce earthquakes in Oklahoma by characterizing basement faults in the field, in seismic surveys and via rock-mechanics experiments. Outcrop and satellite mapping reveal widespread fault and fracture systems with trends that display a marked similarity to the trends of recent earthquake lineaments. Our three-dimensional seismic analyses show steeply dipping basement-rooted faults that penetrate the overlying sedimentary sequences, representing pathways for wastewater migration. Experimental stability analysis indicates that Oklahoma’s basement rocks become seismically unstable at conditions relevant to the dominant hypocentral depths of the recent earthquakes. These analyses demonstrate that the geometry, structure and mechanical stability of Oklahoma’s basement make it critically susceptible to seismic reactivation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Earthquakes and basement lithology in Oklahoma.
Fig. 2: Outcrop fractures.
Fig. 3: Three-dimensional seismic data and structural data compilation.
Fig. 4: Depth distribution of seismic stability and earthquakes in Oklahoma.

Data availability

All data and materials that support the findings of this study can be made available, in some form, to any researcher for purposes of reproducing or extending the analysis upon request to the corresponding author. The 3D seismic data from Osage County are publicly available through Osage Nation. Oklahoma Geological Survey data products can be found at www.ou.edu/ogs. Field mapping data can be provided upon request by contacting the corresponding author. Laboratory data appearing in Supplementary Figs. 4 and 6 acquired during experiments at the US Geological Survey in Menlo Park, California, and the friction data used in this study can be obtained from https://doi.org/10.5066/P9AJWOZD.

References

  1. 1.

    Ellsworth, W. L. Injection-induced earthquakes. Science 341, 1225942 (2013).

    Article  Google Scholar 

  2. 2.

    Keranen, K. M., Weingarten, M., Abers, G. A., Bekins, B. A. & Ge, S. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science 345, 448–451 (2014).

    Article  Google Scholar 

  3. 3.

    Walsh, F. R. III & Zoback, M. D. Oklahoma’s recent earthquakes and saltwater disposal. Sci. Adv. 1, e1500195 (2015).

    Article  Google Scholar 

  4. 4.

    Schultz, R., Wang, R., Gu, Y. J., Haug, K. & Atkinson, G. A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta. J. Geophys. Res. Solid Earth 122, 492–505 (2017).

    Article  Google Scholar 

  5. 5.

    Chen, X. et al. The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks. Sci. Rep. 7, 4945 (2017).

    Article  Google Scholar 

  6. 6.

    Goebel, T. H. W., Weingarten, M., Chen, X., Haffener, J. & Brodsky, E. E. The 2016 M w 5.1 Fairview, Oklahoma earthquakes: evidence for long-range poroelastic triggering at >40 km from fluid disposal wells. Earth Planet. Sci. Lett. 472, 50–61 (2017).

    Article  Google Scholar 

  7. 7.

    McGarr, A. & Barbour, A. J. Wastewater disposal and the earthquake sequences during 2016 near Fairview, Pawnee, and Cushing, Oklahoma. Geophys. Res. Lett. 44, 9330–9336 (2017).

    Article  Google Scholar 

  8. 8.

    Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. Fault stability inferred from granite sliding experiments at hydrothermal conditions. Geophys. Res. Lett. 18, 609–612 (1991).

    Article  Google Scholar 

  9. 9.

    Bickford, M. E., Van Schmus, W. R., Karlstrom, K. E., Mueller, P. A. & Kamenov, G. D. Mesoproterozoic-trans-Laurentian magmatism: a synthesis of continent-wide age distributions, new SIMS U–Pb ages, zircon saturation temperatures, and Hf and Nd isotopic compositions. Precambrian Res. 265, 286–312 (2015).

    Article  Google Scholar 

  10. 10.

    Lidiak, E. G., Denison, R. E. & Stern, R. J. Cambrian (?) Mill Creek diabase dike swarm, eastern Arbuckles: a glimpse of Cambrian rifting in the Southern Oklahoma Aulacogen. Okla. Geol. Surv. Guideb. 38, 105–122 (2014).

    Google Scholar 

  11. 11.

    Denison, R. E. Basement Rocks in Northeastern Oklahoma Circular 84 (Oklahoma Geological Survey, The University of Oklahoma Printing Services, 1981).

  12. 12.

    Denison, R. E., Lidiak, E. G., Bickford, M. E. & Kisvarsanyi, E. B. Geology and Geochronology of Precambrian Rocks in the Central Interior Region of the United States Professional Paper 1241-C (US Geological Survey, 1984).

  13. 13.

    Shah, A. K. & Keller, G. R. Geologic influence on induced seismicity: constraints from potential field data in Oklahoma. Geophys. Res. Lett. 44, 152–161 (2017).

    Article  Google Scholar 

  14. 14.

    Cannon, W. F. Closing of the Midcontinent Rift—a far-field effect of Grenvillian compression. Geology 22, 155–158 (1994).

    Article  Google Scholar 

  15. 15.

    Brewer, J. A., Good, R., Oliver, J. E., Brown, L. D. & Kaufman, S. COCORP profiling across the Southern Oklahoma aulacogen: overthrusting of the Wichita Mountains and compression within the Anadarko Basin. Geology 11, 109–114 (1983).

    Article  Google Scholar 

  16. 16.

    Powers, S. Age of the folding of the Oklahoma mountains—the Ouachita, Arbuckle, and Wichita mountains of Oklahoma and the Llano-Burnet and Marathon uplifts of Texas. Geol. Soc. Am. Bull. 39, 1031–1071 (1928).

    Article  Google Scholar 

  17. 17.

    Keller, G. R. & Stephenson, R. A. The Southern Oklahoma and Dniepr-Donets aulacogens: a comparative analysis. Geol. Soc. Am. Mem. 200, 127–143 (2007).

    Google Scholar 

  18. 18.

    Denison, R. E. Significance of air-photograph linears in the basement rocks of the Arbuckle Mountains. In Structural Styles in the Southern Midcontinent, 1992 Symposium (ed. Johnson, K. S.) 119–131 (Oklahoma Geological Survey, 1995).

  19. 19.

    Barton, N. & Choubey, V. The shear strength of rock joints in theory and practice. Rock. Mech. 10, 1–54 (1977).

    Article  Google Scholar 

  20. 20.

    Martin, C. D. & Stimpson, B. The effect of sample disturbance on laboratory properties of Lac du Bonnet granite. Can. Geotech. J. 31, 692–702 (1994).

    Article  Google Scholar 

  21. 21.

    Segall, P. & Pollard, D. D. Nucleation and growth of strike slip faults in granite. J. Geophys. Res. Solid Earth 88, 555–568 (1983).

    Article  Google Scholar 

  22. 22.

    Barton, C. A. & Zoback, M. D. Self-similar distribution and properties of macroscopic fractures at depth in crystalline rock in the Cajon Pass scientific drill hole. J. Geophys. Res. 97, 5181–5200 (1992).

    Article  Google Scholar 

  23. 23.

    Sagy, A., Reches, Z. E. & Roman, I. Dynamic fracturing: field and experimental observations. J. Struct. Geol. 23, 1223–1239 (2001).

    Article  Google Scholar 

  24. 24.

    Fielding, E. J., Sangha, S. S., Bekaert, D. P., Samsonov, S. V. & Chang, J. C. Surface deformation of north-central Oklahoma related to the 2016 M w 5.8 Pawnee earthquake from SAR interferometry time series. Seismol. Res. Lett. 88, 971–982 (2017).

    Article  Google Scholar 

  25. 25.

    Elebiju, O. O., Matson, S., Keller, G. R. & Marfurt, K. J. Integrated geophysical studies of the basement structures, the Mississippi chert, and the Arbuckle Group of Osage County region, Oklahoma. Am. Assoc. Pet. Geol. Bull. 95, 371–393 (2011).

    Google Scholar 

  26. 26.

    McGarr, A. & Barbour, A. J. Injection-induced moment release can also be aseismic. Geophys. Res. Lett. 45, 5344–5351 (2018).

    Article  Google Scholar 

  27. 27.

    Moore, D. E. & Lockner, D. A. Frictional strengths of talc‐serpentine and talc‐quartz mixtures. J. Geophys. Res. Solid Earth 116, B01403 (2011).

    Article  Google Scholar 

  28. 28.

    Harrison, W. E., Luza, K. V., Prater, M. L., Cheung, P. K. & Ruscetta, C. A. Geothermal Resource Assessment in Oklahoma No. DOE/ID/12079-71-Vol. 1/ESL-98-Vol. 1/CONF-820491 1–12 (Earth Science Laboratory, University of Utah Research Institute, 1982).

  29. 29.

    Dieterich, J. H. Modeling of rock friction 1. Experimental results and constitutive equations. J. Geophys. Res. 84, 2161–2168 (1979).

    Article  Google Scholar 

  30. 30.

    Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).

    Article  Google Scholar 

  31. 31.

    Ikari, M. J., Marone, C. & Saffer, D. M. On the relation between fault strength and frictional stability. Geology 39, 83–86 (2011).

    Article  Google Scholar 

  32. 32.

    Nelson, P. H., Gianoutsos, N. J. & Drake, R. M. Underpressure in Mesozoic and Paleozoic rock units in the Midcontinent of the United States. Am. Assoc. Pet. Geol. Bull. 99, 1861–1892 (2015).

    Google Scholar 

  33. 33.

    Blanpied, M. L., Tullis, T. E. & Weeks, J. D. Effects of slip, slip rate, and shear heating on the friction of granite. J. Geophys. Res. 103, 489–511 (1998).

    Article  Google Scholar 

  34. 34.

    Keranen, K. M., Savage, H. M., Abers, G. A. & Cochran, E. S. Potentially induced earthquakes in Oklahoma, USA: links between wastewater injection and the 2011 M w 5.7 earthquake sequence. Geology 41, 699–702 (2013).

    Article  Google Scholar 

  35. 35.

    Hurd, O. & Zoback, M. D. Regional stress orientations and slip compatibility of earthquake focal planes in the New Madrid seismic zone. Seismol. Res. Lett. 83, 672–679 (2012).

    Article  Google Scholar 

  36. 36.

    Reches, Z. Analysis of faulting in three-dimensional strain field. Tectonophysics 47, 109–129 (1978).

    Article  Google Scholar 

  37. 37.

    Heesakkers, V., Murphy, S., Lockner, D. A. & Reches, Z. Earthquake rupture at focal depth, part II: mechanics of the 2004 M 2.2 earthquake along the Pretorius Fault, TauTona Mine, South Africa. Pure Appl. Geophys. 168, 2427–2449 (2011).

    Article  Google Scholar 

  38. 38.

    Zoback, M. D. & Zoback, M. L. in Neotectonics of North America (eds Slemmons, D. B., et al.) 339–366 (Geological Society of America, 1991).

  39. 39.

    Walsh, F. R. III & Zoback, M. D. Probabilistic assessment of potential fault slip related to injection-induced earthquakes: application to north-central Oklahoma, USA. Geology 44, 991–994 (2016).

    Article  Google Scholar 

  40. 40.

    Barbour, A. J., Norbeck, J. H. & Rubinstein, J. L. The effects of varying injection rates in Osage County, Oklahoma, on the 2016 M w 5.8 Pawnee earthquake. Seismol. Res. Lett. 88, 1040–1053 (2017).

    Article  Google Scholar 

  41. 41.

    Marsh, S. & Holland, A. Comprehensive Fault Database and Interpretive Fault Map of Oklahoma Open-File Report OF2-2016 (Oklahoma Geological Survey, 2016).

  42. 42.

    Qi, W. Stress Analysis of Recent Earthquakes in Oklahoma. MSc thesis, University of Oklahoma (2016).

  43. 43.

    Alt, R. C. & Zoback, M. D. In situ stress and active faulting in Oklahoma. Bull. Seismol. Soc. Am. 107, 216–228 (2016).

    Article  Google Scholar 

  44. 44.

    Verberne, B. A., Niemeijer, A. R., De Bresser, J. H. P. & Spiers, C. J. Mechanical behavior and microstructure of simulated calcite fault gouge sheared at 20–600 °C: implications for natural faults in limestones. J. Geophys. Res. Solid Earth 120, 8169–8196 (2015).

    Article  Google Scholar 

  45. 45.

    Kanamori, H. Magnitude scale and quantification of earthquakes. Tectonophysics 93, 185–199 (1983).

    Article  Google Scholar 

  46. 46.

    Chopra, S. & Marfurt, K. J. Seismic Attributes for Prospect Identification and Reservoir Characterization (Society of Exploration Geophysicists, 2007).

  47. 47.

    Kroll, K. A., Cochran, E. S. & Murray, K. E. Poroelastic properties of the Arbuckle Group in Oklahoma derived from well fluid level response to the 3 September 2016 M w 5.8 Pawnee and 7 November 2016 M w 5.0 Cushing earthquakes. Seismol. Res. Lett. 88, 963–970 (2017).

    Article  Google Scholar 

  48. 48.

    Schoenball, M. & Ellsworth, W. L. Waveform‐relocated earthquake catalog for Oklahoma and southern Kansas illuminates the regional fault network. Seismol. Res. Lett. 88, 1252–1258 (2017).

    Article  Google Scholar 

  49. 49.

    Waldhauser, F. & Ellsworth, W. L. A double-difference earthquake location algorithm: method and application to the northern Hayward fault. Calif. Bull. Seismol. Soc. Am. 90, 1353–1368 (2000).

    Article  Google Scholar 

  50. 50.

    Ruina, A. Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the USGS Induced Seismicity Project for providing financial support and laboratory expertise/time to conduct the experiments presented in this manuscript. We thank N. Beeler and A. Barbour for their helpful reviews. We thank Osage Nation and SpyGlass Energy, LLC, for providing the seismic data used in this study. We also thank the Oklahoma Geological Survey for providing earthquake and focal mechanism data.

Author information

Affiliations

Authors

Contributions

F.K., D.A.L., Z.R. and B.M.C. wrote the manuscript. F.K. and C.S.J. performed satellite fracture mapping. F.K., C.S.J., Z.R. and B.M.C. completed the fieldwork. J.C.C. assisted with earthquake relocation and epicentre-cluster lineament mapping. F.K. and K.J.M. completed the 3D seismic analysis. C.B.M., D.A.L., Z.R. and B.M.C. designed, performed, and analysed the friction experiments.

Corresponding author

Correspondence to B. M. Carpenter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kolawole, F., Johnston, C.S., Morgan, C.B. et al. The susceptibility of Oklahoma’s basement to seismic reactivation. Nat. Geosci. 12, 839–844 (2019). https://doi.org/10.1038/s41561-019-0440-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing