Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Possible explosion crater origin of small lake basins with raised rims on Titan

Abstract

The Cassini mission discovered lakes and seas comprising mostly methane in the polar regions of Titan. Lakes of liquid nitrogen may have existed during the epochs of Titan’s past in which methane was photochemically depleted, leaving a nearly pure molecular nitrogen atmosphere and, thus, far colder temperatures. The modern-day small lake basins with sharp edges have been suggested to originate from dissolution processes, due to their morphological similarity to terrestrial karstic lakes. Here we analyse the morphology of the small lake basins that feature raised rims to elucidate their origin, using delay-Doppler processed altimetric and bathymetric data acquired during the last close flyby of Titan by the Cassini spacecraft. We find that the morphology of the raised-rim basins is analogous to that of explosion craters from magma–water interaction on Earth and therefore propose that these basins are from near-surface vapour explosions, rather than karstic. We calculate that the phase transition of liquid nitrogen in the near subsurface during a warming event can generate explosions sufficient to form the basins. Hence, we suggest that raised-rim basins are evidence for one or more warming events terminating a nitrogen-dominated cold episode on Titan.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Winnipeg Lacus and surrounding lakes.

NASA/JPL/CalTech

Fig. 2: SED lakes.

NASA/PDS

Fig. 3: Stability of methane, ethane, nitrogen and clathrates on the surface and within subsurface aquifers.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information.

Code availability

The mathematical algorithms that support findings of this study are available from the corresponding author upon request.

References

  1. Stofan, E. R. et al. The lakes of Titan. Nature 445, 61–64 (2007).

    Article  Google Scholar 

  2. Lopes, R. M. et al. The lakes and seas of Titan. EOS Trans. Am. Geophys. Union 88, 569–570 (2007).

    Article  Google Scholar 

  3. Hayes, A. et al. Hydrocarbon lakes on Titan: distribution and interaction with a porous regolith. Geophys. Res. Lett. 35, L09204 (2008).

    Article  Google Scholar 

  4. Aharonson, O. et al. An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing. Nat. Geosci. 2, 851–854 (2009).

    Article  Google Scholar 

  5. Hayes, A. G. et al. Transient surface liquid in Titan’s polar regions from Cassini. Icarus 211, 655–671 (2011).

    Article  Google Scholar 

  6. Mastrogiuseppe, M. et al. The bathymetry of a Titan sea. Geophys. Res. Lett. 41, 1432–1437 (2014).

    Article  Google Scholar 

  7. Mastrogiuseppe, M. et al. Deep and methane-rich lakes on Titan. Nat. Astron. 3, 535–542 (2019).

    Article  Google Scholar 

  8. Yung, Y. L., Allen, M. & Pinto, J. P. Photochemistry of the atmosphere of Titan: comparison between model and observations. Astrophys. J. Suppl. Ser. 55, 465–506 (1984).

    Article  Google Scholar 

  9. Hayes, A. G. et al. Topographic constraints on the evolution and connectivity of Titan’s lacustrine basins. Geophy. Res. Lett. 44, 11745–11753 (2017).

    Article  Google Scholar 

  10. Poggiali, V. et al. High-resolution topography of Titan adapting the delay/Doppler algorithm to the Cassini RADAR altimeter data. IEEE Trans. Geosci. Remote Sens. https://doi.org/10.1109/TGRS.2019.2912575 (2019).

    Article  Google Scholar 

  11. Hayes, A. G. The lakes and seas of Titan. Annu. Rev. Earth Planet. Sci. 44, 57–83 (2016).

    Article  Google Scholar 

  12. Birch, S. P. D. et al. Geomorphologic mapping of Titan’s polar terrains: constraining surface processes and landscape evolution. Icarus 282, 214–236 (2017).

    Article  Google Scholar 

  13. Birch, S. P. D. et al. Raised rims around Titan’s sharp-edged depressions. Geophys. Res. Lett. 46, 5846–5854 (2018).

    Google Scholar 

  14. Malaska, M. et al. Identification of karst-like terrain on Titan from valley analysis. In Proc. 41st Lunar Planet. Sci. Conf. 1544 (USRA, 2010).

  15. Cornet, T. et al. Dissolution on Titan and on Earth: toward the age of Titan’s karstic landscapes. J. Geophys. Res. Planets 120, 1044–1074 (2015).

    Article  Google Scholar 

  16. Perron, J. T. et al. Valley formation and methane precipitation rates on Titan. J. Geophys. Res. Planets 111, E11001 (2006).

    Article  Google Scholar 

  17. Krasnopolsky, V. A. A photochemical model of Titan’s atmosphere and ionosphere. Icarus 201, 226–256 (2009).

    Article  Google Scholar 

  18. Lorenz, R. D., McKay, C. P. & Lunine, J. I. Photochemically-driven collapse of Titan’s atmosphere. Science 275, 642–644 (1997).

    Article  Google Scholar 

  19. Lorenz, V. Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. Geolines 15, 72–83 (2003).

    Google Scholar 

  20. Graettinger, A. H. Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database. J. Volcanol. Geotherm. Res. 357, 1–13 (2018).

    Article  Google Scholar 

  21. Valentine, G. A. et al. Experiments with vertically- and laterally-migrating subsurface explosions with applications to the geology of phreatomagmatic and hydrothermal explosion craters and diatremes. Bull. Volcanol. 77, 15 (2015).

    Article  Google Scholar 

  22. Begét, J. E., Hopkins, D. M. & Charron, S. D. The largest known maars on Earth, Seward Peninsula, northwest Alaska. Arctic 49, 62–69 (1996).

    Article  Google Scholar 

  23. Avellán, D. R., Macías, J. L., Pardo, N., Scolamacchia, T. & Rodriguez, D. Stratigraphy, geomorphology, geochemistry and hazard implications of the Nejapa Volcanic Field, western Managua, Nicaragua. J. Volcanol. Geotherm. Res. 213-214, 51–71 (2012).

    Article  Google Scholar 

  24. Valentine, G. A., Graettinger, A. H. & Sonder, I. Explosion depths for phreatomagmatic eruptions. Geophys. Res. Lett. 41, 3045–3051 (2014).

    Article  Google Scholar 

  25. Ross, P.-S. et al. Experimental birth of a maar-diatreme volcano. J. Volcanol. Geotherm. Res. 260, 1–12 (2013).

    Article  Google Scholar 

  26. Seib, N., Kley, J. & Büchel, G. Identification of maars and similar volcanic landforms in the West Eifel Volcanic Field through image processing of DTM data: efficiency of different methods depending on preservation state. Int. J. Earth Sci. 102, 875–901 (2013).

    Article  Google Scholar 

  27. White, J. D. L. Pliocene subaqueous fans and Gilbert-type deltas in maar crater lakes, Hopi Buttes, Navajo Nation (Arizona), USA. Sedimentology 39, 931–946 (1992).

    Article  Google Scholar 

  28. Black, B. A., Perron, J. T., Burr, D. M. & Drummond, S. A. Estimating erosional exhumation on Titan from drainage network morphology. J. Geophys. Res. Planets 117, E08006 (2012).

    Google Scholar 

  29. Charnay, B., Forget, F., Tobie, G., Sotin, C. & Wordsworth, R. Titan’s past and future: 3D modeling of a pure nitrogen atmosphere and geological implications. Icarus 241, 269–279 (2014).

    Article  Google Scholar 

  30. Valentine, G. A. et al. Tephra ring interpretation in light of evolving maar-diatreme concepts: Stracciacappa maar (central Italy). J. Volcanol. Geotherm. Res. 308, 19–29 (2015).

    Article  Google Scholar 

  31. Solomonidou, A. et al. Spectral and emissivity analysis of the raised ramparts around Titan’s northern lakes. Icarus https://doi.org/10.1016/j.icarus.2019.05.040 (2019).

  32. Michaelides, R. J. et al. Constraining the physical properties of Titan’s empty lake basins using nadir and off-nadir Cassini RADAR backscatter. Icarus 270, 57–66 (2016).

    Article  Google Scholar 

  33. Tchamabé, B. C. et al. Towards the reconstruction of the shallow plumbing system of the Barombi Mbo Maar (Cameroon) implications for diatreme growth processes of a polygenetic maar volcano. J. Volcanol. Geotherm. Res. 301, 293–313 (2015).

    Article  Google Scholar 

  34. Hörst, S. M. Titan’s atmosphere and climate. J. Geophys. Res. Planets 122, 432–482 (2017).

    Article  Google Scholar 

  35. Tobie, G., Lunine, J. I. & Sotin, C. Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440, 61–64 (2006).

    Article  Google Scholar 

  36. Smith, B. A. et al. Voyager 2 at Neptune: imaging science results. Science 246, 1422–1449 (1989).

    Article  Google Scholar 

  37. Soderblom, L. A. et al. Triton’s geyser-like plumes: discovery and basic characterization. Science 250, 410–415 (1990).

    Article  Google Scholar 

  38. Duxbury, N. S. & Brown, R. H. The role of an internal heat source for the eruptive plumes on Triton. Icarus 125, 83–93 (1997).

    Article  Google Scholar 

  39. Elliot, J. Letal Global warming on Triton. Nature 393, 765–767 (1998).

    Article  Google Scholar 

  40. Buratti, B. J., Hicks, M. D. & Newburn, R. L. Jr Does global warming make Triton blush? Nature 397, 219 (1999).

    Article  Google Scholar 

  41. Hicks, M. D. & Buratti, B. J. The spectral variability of Triton from 1997–2000. Icarus 171, 210–218 (2004).

    Article  Google Scholar 

  42. Sloan, E. D. & Koh, C. Clathrate Hydrates of Natural Gases 3rd edn (CRC, 2008).

  43. Holsapple, K. A. & Schmidt, R. M. On the scaling of crater dimensions: 1. Explosive processes. J. Geophys. Res. Solid Earth 85, 7247–7256 (1980).

    Article  Google Scholar 

  44. Goto, A., Taniguchi, H., Yoshida, M., Ohba, T. & Oshima, H. Effects of explosion energy and depth to the formation of blast wave and crater: field explosion experiment for the understanding of volcanic explosion. Geophys. Res. Lett. 28, 4287–4290 (2001).

    Article  Google Scholar 

  45. Valentine, G. A. et al. Experimental craters formed by single and multiple buried explosions and implications for volcanic craters with emphasis on maars. Geophys. Res. Lett. 39, L20301 (2012).

    Article  Google Scholar 

  46. Kehle, R. O. Deformation of the Ross Ice Shelf, Antarctica. Geol. Soc. Am. Bull. 75, 259–286 (1964).

    Article  Google Scholar 

  47. Litwin, K. L., Zygielbaum, B. R., Polito, P. J., Sklar, L. S. & Collins, G. C. Influence of temperature, composition, and grain size on the tensile failure of water ice: implications for erosion on Titan. J. Geophys. Res. Planets 117, E08013 (2012).

    Article  Google Scholar 

  48. Graettinger, A. H. et al. Maar-diatreme geometry and deposits: subsurface blast experiments with variable explosion depth. Geochem. Geophys. Geosyst. 15, 740–764 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. H. Graettinger and J. Radebaugh for useful comments. We thank A. Hayes for his constructive comments on the manuscript. G.M. expresses appreciation to A. Solomonidou for sharing her results. J.I.L. acknowledges support from the Cassini project, subcontract 1437803. V.P. acknowledges funding for this work from the NASA PDART programme grant number 80NSSC18K0513.

Author information

Authors and Affiliations

Authors

Contributions

G.M. performed the data and morphological analysis, developed the geophysical models and wrote the manuscript. J.I.L. contributed to the interpretation of the data and contributed to the writing of the manuscript. M.M. and V.P. performed the data analysis (altimetric, bathymetric and SAR data) and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Giuseppe Mitri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitri, G., Lunine, J.I., Mastrogiuseppe, M. et al. Possible explosion crater origin of small lake basins with raised rims on Titan. Nat. Geosci. 12, 791–796 (2019). https://doi.org/10.1038/s41561-019-0429-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0429-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing