Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Abundance of highly siderophile elements in lunar basalts controlled by iron sulfide melt

Abstract

The Moon accreted meteoritic material towards the end of Solar System formation. Quantification of this late accretion requires an estimation of the abundance of highly siderophile, or iron-loving, elements in the lunar mantle. As lunar mantle samples are not available, estimates are derived from lunar basalt compositions, but the melting phase relations needed to derive the mantle composition are poorly constrained. Here we present sulfur solubility measurements from laboratory experiments, combined with thermodynamic calculations, which show that the lunar basalt source is likely to be saturated in a sulfur-poor, iron-rich sulfide melt that concentrates some highly siderophile elements more than others. We found that the observed range in the ratios of highly siderophile elements in primitive lunar basalts is much smaller than expected from residual sulfide control alone. Instead, the elemental ratios are consistent with mixing between primary sulfide-saturated melts and minute (<1%) amounts of lunar regolith that contain impact debris. Although the composition of some samples suggests a highly depleted lunar mantle, the exact level of depletion is unclear, because mixing trajectories overlap at the inferred level of regolith contamination. We conclude that the composition of the lunar mantle is veiled by regolith contamination of the lunar basalts. If so, highly siderophile element abundances in lunar mantle-derived materials cannot be used to determine the mass of material accreted late onto the Moon.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Sulfide solubility as a function of \(f_{{\rm{O}}_2}\) relative to the IW buffer.
Fig. 2: Backscattered electron images of the sectioned and polished run products from high-pressure sulfide solubility experiments.
Fig. 3: Comparison of calculated sulfide solubility to measured sulfur content of lunar mare mafic volcanic samples.
Fig. 4: Comparison between melting model results and the composition of primitive lunar mare basalts.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. 1.

    Day, J. M. D., Pearson, D. G. & Taylor, L. A. Highly siderophile element constraints on accretion and differentiation of the Earth–Moon system. Science 315, 217–219 (2007).

    Article  Google Scholar 

  2. 2.

    Becker, H. et al. Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim. Cosmochim. Acta 70, 4528–4550 (2006).

    Article  Google Scholar 

  3. 3.

    Walker, R. J., Horan, M. F., Shearer, C. K. & Papike, J. J. Low abundances of highly siderophile elements in the lunar mantle: evidence for prolonged late accretion. Earth Planet. Sci. Lett. 224, 399–413 (2004).

    Article  Google Scholar 

  4. 4.

    Morgan, J. W., Walker, R. J., Brandon, A. D. & Horan, M. F. Siderophile elements in Earth’s upper mantle and lunar breccias: data synthesis suggests manifestations of the same late influx. Meteorit. Planet. Sci. 36, 1257–1275 (2001).

    Article  Google Scholar 

  5. 5.

    Bottke, W. F., Levison, H. F., Nesvorny, D. & Dones, L. Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus 190, 203–223 (2007).

    Article  Google Scholar 

  6. 6.

    Nesvorny, D. et al. Cometary origin of the zodiacal cloud and carbonaceous meteorites: implications for hot debris disks. Astrophys. J. 713, 816–836 (2012).

    Article  Google Scholar 

  7. 7.

    Schlichting, H. E., Warren, P. H. & Yin, Q.-Z. The last stages of terrestrial planet formation: dynamical friction and the late veneer. Astrophys. J. 752, 1–8 (2012).

    Article  Google Scholar 

  8. 8.

    Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010).

    Article  Google Scholar 

  9. 9.

    Raymond, S. N., Schlichting, H. E., Hersant, F. & Selsis, F. Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226, 671–681 (2013).

    Article  Google Scholar 

  10. 10.

    Hauri, E. H., Saal, A. E., Rutherford, M. C. & Van Orman, J. A. Water in the Moon’s interior: truth and consequences. Earth Planet. Sci. Lett. 409, 252–264 (2015).

    Article  Google Scholar 

  11. 11.

    Sharp, Z. D., Shearer, C. K., McKeegan, K. D., Barned, J. D. & Wang, Y. Q. The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science 329, 1050–1053 (2010).

    Article  Google Scholar 

  12. 12.

    McCubbin, F. et al. Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: abundances, distributions, processes, and reservoirs. Am. Miner. 100, 1668–1707 (2015).

    Article  Google Scholar 

  13. 13.

    Mungall, J. E. & Brenan, J. M. Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle–crust fractionation of the chalcophile elements. Geochim. Cosmochim. Acta 125, 265–289 (2014).

    Article  Google Scholar 

  14. 14.

    Ding, S., Hough, T. & Dasgupta, R. New high pressure experiments on sulfide saturation of high-FeO* basalts with variable TiO2 contents—implications for the sulfur inventory of the lunar interior. Geochim. Cosmochim. Acta 222, 319–339 (2018).

    Article  Google Scholar 

  15. 15.

    Steenstra, E. S. et al. Evidence for a sulfur-undersaturated lunar interior from the solubility of sulfur in lunar melts and sulfide–silicate partitioning of siderophile elements. Geochim. Cosmochim. Acta 231, 130–156 (2018).

    Article  Google Scholar 

  16. 16.

    Wadhwa, M. Redox conditions on small bodies, the Moon and Mars. Rev. Mineral. Geochem. 68, 493–510 (2008).

    Article  Google Scholar 

  17. 17.

    Green, D. H., Ware, N. G., Hibberson, W. O. & Major, A. Experimental petrology of Apollo 12 basalts. Part 1, sample 12009. Earth Planet. Sci. Lett. 13, 85–96 (1971).

    Article  Google Scholar 

  18. 18.

    Papike, J. J., Fowler, G. W., Adcock, C. T. & Shearer, C. K. Systematics of Ni and Co in olivine from planetary melt systems: lunar mare basalts. Am. Mineral. 84, 392–399 (1999).

    Article  Google Scholar 

  19. 19.

    O’Neill, H. St C. & Mavrogenes, J. A. The sulfide capacity and sulfur content at sulfide saturation of silicate melts at 1,400 °C and 1 bar. J. Petrol. 43, 1049–1087 (2002).

    Article  Google Scholar 

  20. 20.

    Jugo, P. J., Wilke, M. & Botcharnikov, R. E. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: implications for S speciation and S content as function of oxygen fugacity. Geochim. Cosmochim. Acta 74, 5926–5938 (2010).

    Article  Google Scholar 

  21. 21.

    Buono, A. S. & Walker, D. The Fe-rich liquidus in the Fe–FeS system from 1 bar to 10 GPa. Geochim. Cosmochim. Acta 75, 2072–2087 (2011).

    Article  Google Scholar 

  22. 22.

    Holzheid, A., Palme, H. & Chakraborty, S. The activities of NiO, CoO and FeO in silicate melts. Chem. Geol. 139, 21–38 (1997).

    Article  Google Scholar 

  23. 23.

    Bombardieri, D. J., Norman, M. D., Kamenetsky, V. S. & Danyushevsky, L. V. Major element and primary sulfur concentrations in Apollo 12 mare basalts: the view from melt inclusions. Meteorit. Planet. Sci. 40, 679–693 (2005).

    Article  Google Scholar 

  24. 24.

    Chen, Y. et al. Water, fluorine, and sulfur concentrations in the lunar mantle. Earth Planet. Sci. Lett. 427, 37–46 (2015).

    Article  Google Scholar 

  25. 25.

    Hauri, E. H., Weinreich, T., Saal, A. E., Rutherford, M. C. & Van Orman, J. A. High pre-eruptive water contents preserved in lunar melt inclusions. Science 333, 213–215 (2011).

    Article  Google Scholar 

  26. 26.

    Saal, A. E. et al. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–195 (2008).

    Article  Google Scholar 

  27. 27.

    Wing, B. A. & Farquhar, J. Sulfur isotope homogeneity of lunar mare basalts. Geochim. Cosmochim. Acta 170, 266–280 (2015).

    Article  Google Scholar 

  28. 28.

    Elkins-Tanton, L. T. Magmatic processes that produced lunar fire fountains. Geophys. Res. Lett. 30, 1513 (2003).

    Article  Google Scholar 

  29. 29.

    Asimow, P. D. & Longhi, J. The significance of multiple saturation points in the context of polybaric near-fractional melting. J. Petrol. 45, 2349–2367 (2004).

    Article  Google Scholar 

  30. 30.

    Smythe, D. J., Wood, B. J. & Kiseeva, E. S. The S content of silicate melts at sulfide saturation: new experiments and a model incorporating the effects of sulfide composition. Am. Min. 102, 795–803 (2017).

    Article  Google Scholar 

  31. 31.

    Fonseca, R. O. C., Mallmann, G., O’Neill, H. St C. & Campbell, I. How chalcophile is rhenium? An experimental study of the solubility of Re in sulphide mattes. Earth Planet. Sci. Lett. 260, 537–548 (2007).

    Article  Google Scholar 

  32. 32.

    Brenan, J. M. Re–Os fractionation by sulfide–silicate partitioning: a new spin. Chem. Geol. 248, 140–165 (2008).

    Article  Google Scholar 

  33. 33.

    Hallis, L. J., Anand, M. & Strekopytov, S. Trace-element modelling of mare basalt parental melts: implications for a heterogeneous lunar mantle. Geochim. Cosmochim. Acta 134, 289–316 (2014).

    Article  Google Scholar 

  34. 34.

    Day, J. M. D., Walker, R. J., James, O. B. & Puchtel, I. S. Osmium isotope and highly siderophile element systematics of the lunar crust. Earth Planet. Sci. Lett. 289, 595–605 (2010).

    Article  Google Scholar 

  35. 35.

    Morbidelli, A. et al. The timeline of the lunar bombardment: revisited. Icarus 305, 262–276 (2018).

    Article  Google Scholar 

  36. 36.

    Day, J. M. D. & Walker, R. J. Highly siderophile element depletion in the Moon. Earth Planet. Sci. Lett. 423, 114–124 (2015).

    Article  Google Scholar 

  37. 37.

    Puchtel, I. S., Walker, R. J., James, O. B. & Kring, D. A. Osmium isotope and highly siderophile element systematics of lunar impact melt breccias: implications for the late accretion history of the Moon and Earth. Geochim. Cosmochim. Acta 72, 3022–3042 (2008).

    Article  Google Scholar 

  38. 38.

    Liu, J., Sharp, M., Ash, R. D., Kring, D. A. & Walker, R. J. Diverse impactors in Apollo 15 and 16 impact melt rocks: evidence from osmium isotopes and highly siderophile elements. Geochim. Cosmochim. Acta 155, 122–153 (2015).

    Article  Google Scholar 

  39. 39.

    Gleißner, P. & Becker, H. Formation of Apollo 16 impactites and the composition of late accreted material: constraints from Os isotopes, highly siderophile elements and sulfur abundances. Geochim. Cosmochim. Acta 200, 1–24 (2017).

    Article  Google Scholar 

  40. 40.

    Horan, M. F., Walker, R. J., Morgan, J. W., Grossman, J. N. & Rubin, A. E. Highly siderophile elements in chondrites. Chem. Geol. 196, 5–20 (2003).

    Article  Google Scholar 

  41. 41.

    Sharma, R. C. & Chang, Y. A. Thermodynamics and phase relationships of transition metal–sulfur systems. Part III. Thermodynamic properties of the Fe–S liquid phase and the calculation of the Fe–S phase diagram. Metall. Trans. B 10, 103–108 (1997).

    Article  Google Scholar 

  42. 42.

    Woodland, A. B. &. O’Neill, H. St C. Thermodynamic data for Fe-bearing phases using noble metal redox sensors. Geochim. Cosmochim. Acta 61, 4359–4366 (1997).

    Article  Google Scholar 

  43. 43.

    Bennett, N., Brenan, J. M. & Fei, Y. Metal-silicate partitioning experiments at high pressures and temperatures: experimental methods and a protocol for suppressing highly siderophile element inclusions. J. Vis. Exp. 100, e52725 (2015).

    Google Scholar 

  44. 44.

    Eggins, S. M., Kinsley, L. P. J. & Shelley, J. M. M. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICPMS. Appl. Surf. Sci. 127-129, 278–286 (1998).

    Article  Google Scholar 

  45. 45.

    Pearce, N. J. G. et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. News 21, 115–144 (1997).

    Article  Google Scholar 

  46. 46.

    Walker, R. J. et al. Modeling fractional crystallization of Group IVB iron meteorites. Geochim. Cosmochim. Acta 72, 2198–2216 (2008).

    Article  Google Scholar 

  47. 47.

    Thompson, J. B. Jr. Thermodynamic properties of simple solutions. Adv. Geochem. 2, 340–361 (1967).

    Google Scholar 

Download references

Acknowledgements

J.M.B. and J.E.M. acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada through the Discovery Grant Program. V. Homolova is thanked for her assistance in conducting some of the sulfide solubility experiments when an undergraduate student at University of Toronto. We especially appreciate the detailed comments from R. Fonseca and P. Gleißner.

Author information

Affiliations

Authors

Contributions

J.M.B. conceived of the study. J.M.B. did the experiments and run-product analysis. J.E.M. did the melting calculations with input from J.M.B. N.R.B. provided the sulfide melt speciation model. J.M.B. wrote the manuscript with input from J.E.M. and N.R.B.

Corresponding author

Correspondence to James M. Brenan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information and Figs. 1–13.

Supplementary Table 1

Summary of silicate and sulfide melt compositions from sulfur solubility experiments.

Supplementary Table 2

Summary of phase compositions from sulfide–silicate partitioning experiments.

Supplementary Table 3

Summary partition coefficients.

Supplementary Table 4

Parameters used for melting and crystallization calculations.

Supplementary Table 5

Summary of mixing parameters for tungsten isotopes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brenan, J.M., Mungall, J.E. & Bennett, N.R. Abundance of highly siderophile elements in lunar basalts controlled by iron sulfide melt. Nat. Geosci. 12, 701–706 (2019). https://doi.org/10.1038/s41561-019-0426-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing