West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing


Recent ice loss from the West Antarctic Ice Sheet has been caused by ocean melting of ice shelves in the Amundsen Sea. Eastward wind anomalies at the shelf break enhance the import of warm Circumpolar Deep Water onto the Amundsen Sea continental shelf, which creates transient melting anomalies with an approximately decadal period. No anthropogenic influence on this process has been established. Here, we combine observations and climate model simulations to suggest that increased greenhouse gas forcing caused shelf-break winds to transition from mean easterlies in the 1920s to the near-zero mean zonal winds of the present day. Strong internal climate variability, primarily linked to the tropical Pacific, is superimposed on this forced trend. We infer that the Amundsen Sea experienced decadal ocean variability throughout the twentieth century, with warm anomalies gradually becoming more prevalent, offering a credible explanation for the ongoing ice loss. Existing climate model projections show that strong future greenhouse gas forcing creates persistent mean westerly shelf-break winds by 2100, suggesting a further enhancement of warm ocean anomalies. These wind changes are weaker under a scenario in which greenhouse gas concentrations are stabilized.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Total surface stress and wind-only stress on the Amundsen Sea.
Fig. 2: Linkages between Amundsen Sea winds and global SST and SLP.
Fig. 3: Amundsen Sea winds within climate model ensembles.
Fig. 4: Trends in Amundsen Sea winds within climate model ensembles.
Fig. 5: One century of wind forcing and ice-sheet response.

Data availability

Sea-ice concentration and drift data that support the findings of this study are available from the National Snow and Ice Data Center (https://doi.org/10.5067/8GQ8LZQVL0VL and https://doi.org/10.5067/O57VAIT2AYYY, respectively). ERA-Interim reanalysis data are available from the ECMWF (https://apps.ecmwf.int/datasets/data/interim-full-daily). Extended Reconstructed Sea Surface Temperature data are available from the National Oceanic and Atmospheric Administration National Climatic Data Center (https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5). Seabed data are available from the British Antarctic Survey (https://secure.antarctica.ac.uk/data/bedmap2). Climate indices are available from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (https://www.esrl.noaa.gov/psd/data/climateindices/list). CMIP5 simulation data are available from the Centre for Environmental Data Analysis (http://www.ceda.ac.uk). CESM simulation data are available from the National Center for Atmospheric Research Climate Data Gateway (https://www.earthsystemgrid.org).

Code availability

The Matlab scripts used for the analyses described in this study can be obtained from the corresponding author on reasonable request.


  1. 1.

    Shepherd, A. et al. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).

    Article  Google Scholar 

  2. 2.

    Shepherd, A., Wingham, D. & Rignot, E. Warm ocean is eroding West Antarctic Ice Sheet. Geophys. Res. Lett. 31, L23402 (2004).

    Article  Google Scholar 

  3. 3.

    Mouginot, J., Rignot, E. & Scheuchl, B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 41, 1576–1584 (2014).

    Article  Google Scholar 

  4. 4.

    Konrad, H. et al. Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett. 44, 910–918 (2017).

    Article  Google Scholar 

  5. 5.

    Jenkins, A. et al. Decadal ocean forcing and Antarctic Ice Sheet response: lessons from the Amundsen Sea. Oceanography 29, 106–117 (2016).

    Article  Google Scholar 

  6. 6.

    Jenkins, A. et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nat. Geosci. 11, 733–738 (2018).

    Article  Google Scholar 

  7. 7.

    Snow, K. et al. The response of ice sheets to climate variability. Geophys. Res. Lett. 44, 11878–11885 (2017).

    Article  Google Scholar 

  8. 8.

    Jenkins, A. et al. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat. Geosci. 3, 468–472 (2010).

    Article  Google Scholar 

  9. 9.

    Steig, E. J., Ding, Q., Battisti, D. S. & Jenkins, A. Tropical forcing of Circumpolar Deep Water inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica. Ann. Glaciol. 53, 19–28 (2012).

    Article  Google Scholar 

  10. 10.

    De Rydt, J., Holland, P. R., Dutrieux, P. & Jenkins, A. Geometric and oceanographic controls on melting beneath Pine Island Glacier. J. Geophys .Res. Oceans 119, 2420–2438 (2014).

    Article  Google Scholar 

  11. 11.

    De Rydt, J. & Gudmundsson, G. H. Coupled ice shelf–ocean modeling and complex grounding line retreat from a seabed ridge. J. Geophys. Res. Earth Surf. 121, 865–880 (2016).

    Article  Google Scholar 

  12. 12.

    Smith, J. A. et al. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier. Nature 541, 77–80 (2016).

    Article  Google Scholar 

  13. 13.

    Jacobs, S. S., Hellmer, H. H. & Jenkins, A. Antarctic Ice Sheet melting in the Southeast Pacific. Geophys. Res. Lett. 23, 957–960 (1996).

    Article  Google Scholar 

  14. 14.

    Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343, 174–178 (2014).

    Article  Google Scholar 

  15. 15.

    Thoma, M., Jenkins, A., Holland, D. & Jacobs, S. Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett. 35, L18602 (2008).

    Article  Google Scholar 

  16. 16.

    Kimura, S. et al. Oceanographic controls on the variability of ice-shelf basal melting and circulation of glacial meltwater in the Amundsen Sea Embayment, Antarctica. J. Geophys. Res. Oceans 122, 10131–10155 (2017).

    Article  Google Scholar 

  17. 17.

    Webber, B. G. M., Heywood, K. J., Stevens, D. P. & Assmann, K. M. The impact of overturning and horizontal circulation in Pine Island Trough on ice shelf melt in the Eastern Amundsen Sea. J. Phys. Oceanogr. 49, 63–83 (2019).

    Article  Google Scholar 

  18. 18.

    Assmann, K. M. et al. Variability of Circumpolar Deep Water transport onto the Amundsen Sea continental shelf through a shelf break trough. J. Geophys. Res. Oceans 118, 6603–6620 (2013).

    Article  Google Scholar 

  19. 19.

    Walker, D. P., Jenkins, A., Assmann, K. M., Shoosmith, D. R. & Brandon, M. A. Oceanographic observations at the shelf break of the Amundsen Sea, Antarctica. J. Geophys. Res. Oceans 118, 2906–2918 (2013).

    Article  Google Scholar 

  20. 20.

    St-Laurent, P., Klinck, J. M. & Dinniman, M. S. Impact of local winter cooling on the melt of Pine Island Glacier, Antarctica. J. Geophys. Res. Oceans 120, 6718–6732 (2015).

    Article  Google Scholar 

  21. 21.

    Davis, P. E. D. et al. Variability in basal melting beneath Pine Island Ice Shelf on weekly to monthly timescales. J. Geophys. Res. Oceans 123, 8655–8669 (2018).

    Article  Google Scholar 

  22. 22.

    Webber, B. G. M. et al. Mechanisms driving variability in the ocean forcing of Pine Island Glacier. Nat. Commun. 8, 14507 (2017).

    Article  Google Scholar 

  23. 23.

    Kim, T. W. et al. Is Ekman pumping responsible for the seasonal variation of warm Circumpolar Deep Water in the Amundsen Sea? Cont. Shelf Res. 132, 38–48 (2017).

    Article  Google Scholar 

  24. 24.

    Raphael, M. N. et al. The Amundsen Sea Low: variability, change, and impact on Antarctic climate. Bull. Am. Meteorol. Soc. 97, 111–121 (2016).

    Article  Google Scholar 

  25. 25.

    Lachlan-Cope, T. & Connolley, W. Teleconnections between the tropical Pacific and the Amundsen–Bellinghausens Sea: role of the El Niño/Southern Oscillation. J. Geophys. Res. Atmos. 111, D23101 (2006).

    Article  Google Scholar 

  26. 26.

    Deser, C., Alexander, M. A., Xie, S. P. & Phillips, A. S. Sea surface temperature variability: patterns and mechanisms. Annu. Rev. Mar. Sci. 2, 115–143 (2010).

    Article  Google Scholar 

  27. 27.

    Schneider, D. P. & Deser, C. Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends. Clim. Dyn. 50, 4599–4618 (2018).

    Article  Google Scholar 

  28. 28.

    Steig, E. J. et al. Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nat. Geosci. 6, 372–375 (2013).

    Article  Google Scholar 

  29. 29.

    Schneider, D. P. & Steig, E. J. Ice cores record significant 1940s Antarctic warmth related to tropical climate variability. Proc. Natl Acad. Sci. USA 105, 12154–12158 (2008).

    Article  Google Scholar 

  30. 30.

    Kay, J. E. et al. The Community Earth System Model (CESM) Large Ensemble Project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Article  Google Scholar 

  31. 31.

    Bracegirdle, T. J., Turner, J., Hosking, J. S. & Phillips, T. Sources of uncertainty in projections of 21st century westerly wind changes over the Amundsen Sea, West Antarctica, in CMIP5 climate models. Clim. Dyn. 43, 2093–2104 (2014).

    Article  Google Scholar 

  32. 32.

    Harvey, B. J., Shaffrey, L. C. & Woollings, T. J. Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Clim. Dyn. 43, 1171–1182 (2014).

    Article  Google Scholar 

  33. 33.

    Arblaster, J. M. & Meehl, G. A. Contributions of external forcings to southern annular mode trends. J. Clim. 19, 2896–2905 (2006).

    Article  Google Scholar 

  34. 34.

    Schneider, D. P., Deser, C. & Fan, T. T. Comparing the impacts of tropical SST variability and polar stratospheric ozone loss on the Southern Ocean westerly winds. J. Clim. 28, 9350–9372 (2015).

    Article  Google Scholar 

  35. 35.

    Gillett, N. P., Fyfe, J. C. & Parker, D. E. Attribution of observed sea level pressure trends to greenhouse gas, aerosol, and ozone changes. Geophys. Res. Lett. 40, 2302–2306 (2013).

    Article  Google Scholar 

  36. 36.

    Yeh, S. W. et al. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56, 185–206 (2018).

    Article  Google Scholar 

  37. 37.

    Cai, W. J. et al. ENSO and greenhouse warming. Nat. Clim. Change 5, 849–859 (2015).

    Article  Google Scholar 

  38. 38.

    Christianson, K. et al. Sensitivity of Pine Island Glacier to observed ocean forcing. Geophys. Res. Lett. 43, 10817–10825 (2016).

    Article  Google Scholar 

  39. 39.

    Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

    Article  Google Scholar 

  40. 40.

    Barnes, E. A., Barnes, N. W. & Polvani, L. M. Delayed Southern Hemisphere climate change induced by stratospheric ozone recovery, as projected by the CMIP5 models. J. Clim. 27, 852–867 (2014).

    Article  Google Scholar 

  41. 41.

    Sanderson, B. M., Oleson, K. W., Strand, W. G., Lehner, F. & O’Neill, B. C. A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario. Climatic Change 146, 303–318 (2018).

    Article  Google Scholar 

  42. 42.

    Little, C. M. & Urban, N. M. CMIP5 temperature biases and 21st century warming around the Antarctic coast. Ann. Glaciol. 57, 69–78 (2016).

    Article  Google Scholar 

  43. 43.

    Cavalieri, D. J., Parkinson, C. L., Gloersen, P. & Zwally, H. J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. 1992–2016 (National Snow and Ice Data Center, 1996); https://doi.org/10.5067/8GQ8LZQVL0VL

  44. 44.

    Tschudi, M., Fowler, C., Maslanik, J., Stewart, J. S. & Meier, W. Polar Pathfinder Daily 25km EASE-Grid Sea Ice Motion Vectors, Version 3. 1992–2016 (National Snow and Ice Data Center, 2016); https://doi.org/10.5067/O57VAIT2AYYY

  45. 45.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  46. 46.

    Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).

    Article  Google Scholar 

  47. 47.

    Huang, B. et al. NOAA Extended Reconstructed Sea Surface Temperature (ERSST). Version 5. 1854–2016 (NOAA National Centers for Environmental Information, 2017); https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5

  48. 48.

    Crosby, D. S., Breaker, L. C. & Gemmill, W. H. A proposed definition for vector correlation in geophysics—theory and application. J. Atmos. Ocean. Technol. 10, 355–367 (1993).

    Article  Google Scholar 

  49. 49.

    Kim, C. S. et al. Variability of the Antarctic Coastal Current in the Amundsen Sea. Estuar. Coast. Shelf Sci. 181, 123–133 (2016).

    Article  Google Scholar 

  50. 50.

    Mazur, A. K., Wåhlin, A. K. & Krezel, A. An object-based SAR image iceberg detection algorithm applied to the Amundsen Sea. Remote Sens. Environ. 189, 67–83 (2017).

    Article  Google Scholar 

  51. 51.

    Zhang, Y., Wallace, J. M. & Battisti, D. S. ENSO-like interdecadal variability: 1900–93. J. Clim. 10, 1004–1020 (1997).

    Article  Google Scholar 

  52. 52.

    Power, S., Casey, T., Folland, C., Colman, A. & Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 15, 319–324 (1999).

    Article  Google Scholar 

  53. 53.

    Newman, M. et al. The Pacific Decadal Oscillation, revisited. J. Clim. 29, 4399–4427 (2016).

    Article  Google Scholar 

  54. 54.

    Henley, B. J. et al. A tripole index for the Interdecadal Pacific Oscillation. Clim. Dyn. 45, 3077–3090 (2015).

    Article  Google Scholar 

  55. 55.

    Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M. & Blade, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 12, 1990–2009 (1999).

    Article  Google Scholar 

  56. 56.

    Deser, C., Guo, R. X. & Lehner, F. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus. Geophys. Res. Lett. 44, 7945–7954 (2017).

    Article  Google Scholar 

  57. 57.

    Kosaka, Y. & Xie, S. P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Article  Google Scholar 

  58. 58.

    Kosaka, Y. & Xie, S. P. The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat. Geosci. 9, 669–673 (2016).

    Article  Google Scholar 

Download references


We are grateful to the originators of the many open-access datasets synthesized in this study, including remotely sensed sea-ice data, atmospheric reanalysis model results, sea surface temperature and bathymetry observations, derived climate indices, and many climate model simulations. P.D. was supported by NSF awards 1643285 and 1644159. E.J.S. was supported by NSF award 1602435.

Author information




P.R.H. conceived the study and led the data processing. T.J.B. processed the CMIP5 model results. All authors discussed the results and implications and collaborated on writing the manuscript at all stages.

Corresponding author

Correspondence to Paul R. Holland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Figs. 1–7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Holland, P.R., Bracegirdle, T.J., Dutrieux, P. et al. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019). https://doi.org/10.1038/s41561-019-0420-9

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing