Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global fire emissions buffered by the production of pyrogenic carbon

A Publisher Correction to this article was published on 01 June 2020

This article has been updated


Landscape fires burn 3–5 million km2 of the Earth’s surface annually. They emit 2.2 Pg of carbon per year to the atmosphere, but also convert a significant fraction of the burned vegetation biomass into pyrogenic carbon. Pyrogenic carbon can be stored in terrestrial and marine pools for centuries to millennia and therefore its production can be considered a mechanism for long-term carbon sequestration. Pyrogenic carbon stocks and dynamics are not considered in global carbon cycle models, which leads to systematic errors in carbon accounting. Here we present a comprehensive dataset of pyrogenic carbon production factors from field and experimental fires and merge this with the Global Fire Emissions Database to quantify the global pyrogenic carbon production flux. We found that 256 (uncertainty range: 196–340) Tg of biomass carbon was converted annually into pyrogenic carbon between 1997 and 2016. Our central estimate equates to 12% of the annual carbon emitted globally by landscape fires, which indicates that their emissions are buffered by pyrogenic carbon production. We further estimate that cumulative pyrogenic carbon production is 60 Pg since 1750, or 33–40% of the global biomass carbon lost through land use change in this period. Our results demonstrate that pyrogenic carbon production by landscape fires could be a significant, but overlooked, sink for atmospheric CO2.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic of the global carbon cycle including the buffer and legacy roles of PyC.
Fig. 2: The box plots show the distributions of PPyC values for each of the biomass component classes in the production factor dataset.
Fig. 3: Annual global PyC production estimates from GFED4s+PyC for the period 1997–2016.
Fig. 4: Annual average PyC production rates for the period 1997–2016 from GFED4s+PyC, based on central production factors (Fig. 2).

Data availability

The global dataset of the PyC production factors is available in Supplementary Data 1. This dataset will also be uploaded to the GFED website ( and updated with new data as it becomes available. Supplementary Section 4 contains full references to the studies included in the production factor dataset. Burned area and fire emissions data are publicly available at the GFED website. Additional ancillary data are available from the corresponding author on request.

Change history

  • 01 June 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    Article  Google Scholar 

  2. 2.

    Landry, J. S. & Matthews, H. D. Non-deforestation fire vs. fossil fuel combustion: the source of CO2 emissions affects the global carbon cycle and climate responses. Biogeosciences 13, 2137–2149 (2016).

    Article  Google Scholar 

  3. 3.

    Yue, C. et al. How have past fire disturbances contributed to the current carbon balance of boreal ecosystems? Biogeosciences 13, 675–690 (2016).

    Article  Google Scholar 

  4. 4.

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    Article  Google Scholar 

  5. 5.

    Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).

    Article  Google Scholar 

  6. 6.

    Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 465–570 (Cambridge Univ. Press, 2013).

  7. 7.

    Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).

    Article  Google Scholar 

  8. 8.

    Rabin, S. S. et al. The fire modeling intercomparison project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geosci. Model Dev. 10, 1175–1197 (2017).

    Article  Google Scholar 

  9. 9.

    Bowman, D. et al. Fire in the Earth system. Science 324, 481–484 (2009).

    Article  Google Scholar 

  10. 10.

    Kuhlbusch, T. A. J. Black carbon and the carbon cycle. Science 280, 1903–1904 (1998).

    Article  Google Scholar 

  11. 11.

    Lehmann, J. et al. Australian climate–carbon cycle feedback reduced by soil black carbon. Nat. Geosci. 1, 832–835 (2008).

    Article  Google Scholar 

  12. 12.

    Santín, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Change Biol. 22, 76–91 (2016).

    Article  Google Scholar 

  13. 13.

    Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M. & McBeath, A. The pyrogenic carbon cycle. Annu. Rev. Earth Planet. Sci. 43, 273–298 (2015).

    Article  Google Scholar 

  14. 14.

    Landry, J.-S. & Matthews, H. D. The global pyrogenic carbon cycle and its impact on the level of atmospheric CO2 over past and future centuries. Glob. Change Biol. 23, 3205–3218 (2017).

    Article  Google Scholar 

  15. 15.

    Schmidt, M. W. I. Carbon budget in the black. Nature 427, 305–307 (2004).

    Article  Google Scholar 

  16. 16.

    Reisser, M., Purves, R. S., Schmidt, M. W. I. & Abiven, S. Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front. Earth Sci. 4, 80 (2016).

    Article  Google Scholar 

  17. 17.

    Ohlson, M., Dahlberg, B., Økland, T., Brown, K. J. & Halvorsen, R. The charcoal carbon pool in boreal forest soils. Nat. Geosci. 2, 692–695 (2009).

    Article  Google Scholar 

  18. 18.

    Koele, N. et al. Amazon Basin forest pyrogenic carbon stocks: first estimate of deep storage. Geoderma 306, 237–243 (2017).

    Article  Google Scholar 

  19. 19.

    Masiello, C. A. & Druffel, E. R. M. Black carbon in deep-sea sediments. Science 280, 1911–1913 (1998).

    Article  Google Scholar 

  20. 20.

    Schmidt, M. W. I. & Noack, A. G. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 14, 777–793 (2000).

    Article  Google Scholar 

  21. 21.

    Dittmar, T. & Paeng, J. A heat-induced molecular signature in marine dissolved organic matter. Nat. Geosci. 2, 175–179 (2009).

    Article  Google Scholar 

  22. 22.

    Wagner, S., Jaffé, R. & Stubbins, A. Dissolved black carbon in aquatic ecosystems. Limnol. Oceanogr. Lett. 3, 168–185 (2018).

    Article  Google Scholar 

  23. 23.

    Bond, T. C. et al. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118, 5380–5552 (2013).

    Article  Google Scholar 

  24. 24.

    Booth, B. & Bellouin, N. Black carbon and atmospheric feedbacks. Nature 519, 167–168 (2015).

    Article  Google Scholar 

  25. 25.

    Kuzyakov, Y., Bogomolova, I. & Glaser, B. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 70, 229–236 (2014).

    Article  Google Scholar 

  26. 26.

    Schneider, M. P. W., Hilf, M., Vogt, U. F. & Schmidt, M. W. I. The benzene polycarboxylic acid (BPCA) pattern of wood pyrolyzed between 200 °C and 1000 °C. Org. Geochem. 41, 1082–1088 (2010).

    Article  Google Scholar 

  27. 27.

    Wiedemeier, D. B. et al. Aromaticity and degree of aromatic condensation of char. Org. Geochem. 78, 135–143 (2015).

    Article  Google Scholar 

  28. 28.

    Jaffé, R. et al. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 340, 345–347 (2013).

    Article  Google Scholar 

  29. 29.

    Coppola, A. I. et al. Global-scale evidence for the refractory nature of riverine black carbon. Nat. Geosci. 11, 584–588 (2018).

    Article  Google Scholar 

  30. 30.

    Lohmann, R. et al. Fluxes of soot black carbon to South Atlantic sediments. Glob. Biogeochem. Cycle 23, GB1015 (2009).

    Article  Google Scholar 

  31. 31.

    Middelburg, J. J., Nieuwenhuize, J. & van Breugel, P. Black carbon in marine sediments. Mar. Chem. 65, 245–252 (1999).

    Article  Google Scholar 

  32. 32.

    Preston, C. M. & Schmidt, M. W. I. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3, 397–420 (2006).

    Article  Google Scholar 

  33. 33.

    Goldberg, E. D. Black Carbon in the Environment: Properties and Distribution (John Wiley and Sons, 1985).

  34. 34.

    Kuhlbusch, Ta. J. & Crutzen, P. J. Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Glob. Biogeochem. Cycles 9, 491–501 (1995).

    Article  Google Scholar 

  35. 35.

    Santín, C., Doerr, S. H., Preston, C. M. & González-Rodríguez, G. Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Glob. Change Biol. 21, 1621–1633 (2015).

    Article  Google Scholar 

  36. 36.

    Wei, X., Hayes, D. J., Fraver, S. & Chen, G. Global pyrogenic carbon production during recent decades has created the potential for a large, long‐term sink of atmospheric CO2. J. Geophys. Res. Biogeosci. 123, 3682–3696 (2018).

    Article  Google Scholar 

  37. 37.

    DeLuca, T. H. & Aplet, G. H. Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front. Ecol. Environ. 6, 18–24 (2008).

    Article  Google Scholar 

  38. 38.

    Singh, N., Abiven, S., Torn, M. S. & Schmidt, M. W. I. Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9, 2847–2857 (2012).

    Article  Google Scholar 

  39. 39.

    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Article  Google Scholar 

  40. 40.

    Thurner, M. et al. Evaluation of climate-related carbon turnover processes in global vegetation models for boreal and temperate forests. Glob. Change Biol. 23, 3076–3091 (2017).

    Article  Google Scholar 

  41. 41.

    Van Marle, M. J. E. et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).

    Article  Google Scholar 

  42. 42.

    Yang, J. et al. Century-scale patterns and trends of global pyrogenic carbon emissions and fire influences on terrestrial carbon balance. Glob. Biogeochem. Cycles 29, 1549–1566 (2015).

    Article  Google Scholar 

  43. 43.

    Schultz, M. G. et al. Global wildland fire emissions from 1960 to 2000. Glob. Biogeochem. Cycles 22, GB2002 (2008).

    Article  Google Scholar 

  44. 44.

    Yang, J. et al. Spatial and temporal patterns of global burned area in response to anthropogenic and environmental factors: reconstructing global fire history for the 20th and early 21st centuries. J. Geophys. Res. Biogeosci. 119, 249–263 (2014).

    Article  Google Scholar 

  45. 45.

    Chen, Y., Morton, D. C., Andela, N., Giglio, L. & Randerson, J. T. How much global burned area can be forecast on seasonal time scales using sea surface temperatures? Environ. Res. Lett. 11, 045001 (2016).

    Article  Google Scholar 

  46. 46.

    Chen, Y. et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Clim. Change 7, 906–911 (2017).

    Article  Google Scholar 

  47. 47.

    Houghton, R. A. et al. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142 (2012).

    Article  Google Scholar 

  48. 48.

    Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).

    Article  Google Scholar 

  49. 49.

    Surawski, N. C., Sullivan, A. L., Roxburgh, S. H., Meyer, C. P. M. & Polglase, P. J. Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates. Nat. Commun. 7, 11536 (2016).

    Article  Google Scholar 

  50. 50.

    Santín, C., Doerr, S. H., Preston, C. M. & González‐Rodríguez, G. Pyrogenic organic matter produced during wildfires can act as a carbon sink – a reply to Billings & Schlesinger (2015). Glob. Change Biol. 24, e399 (2018).

    Article  Google Scholar 

  51. 51.

    Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).

    Article  Google Scholar 

  52. 52.

    Leifeld, J. et al. Pyrogenic carbon contributes substantially to carbon storage in intact and degraded northern peatlands. L. Degrad. Dev. 29, 2082–2091 (2018).

    Article  Google Scholar 

  53. 53.

    Doerr, S. H., Santín, C., Merino, A., Belcher, C. M. & Baxter, G. Fire as a removal mechanism of pyrogenic carbon from the environment: effects of fire and pyrogenic carbon characteristics. Front. Earth Sci. 6, 127 (2018).

    Article  Google Scholar 

  54. 54.

    Saiz, G. et al. Charcoal re-combustion efficiency in tropical savannas. Geoderma 219–220, 40–45 (2014).

    Article  Google Scholar 

  55. 55.

    Santín, C., Doerr, S. H., Preston, C. & Bryant, R. Consumption of residual pyrogenic carbon by wildfire. Int. J. Wildl. Fire 22, 1072–1077 (2013).

    Article  Google Scholar 

  56. 56.

    Andela, N. et al. The Global Fire Atlas of individual fire size, duration, speed, and direction. Earth Syst. Sci. Data 11, 529–552 (2019).

    Article  Google Scholar 

  57. 57.

    Archibald, S., Lehmann, C. E. R., Gomez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).

    Article  Google Scholar 

  58. 58.

    Knorr, W., Arneth, A. & Jiang, L. Demographic controls of future global fire risk. Nat. Clim. Change 6, 781–785 (2016).

    Article  Google Scholar 

  59. 59.

    Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167–19170 (2010).

    Article  Google Scholar 

  60. 60.

    Flannigan, M. et al. Global wildland fire season severity in the 21st century. Ecol. Manag. 294, 54–61 (2013).

    Article  Google Scholar 

  61. 61.

    Miesel, J., Reiner, A., Ewell, C., Maestrini, B. & Dickinson, M. Quantifying changes in total and pyrogenic carbon stocks across fire severity gradients using active wildfire incidents. Front. Earth Sci. 6, 41 (2018).

    Article  Google Scholar 

  62. 62.

    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    Article  Google Scholar 

  63. 63.

    Arora, V. K. & Melton, J. R. Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land. Nat. Commun. 9, 1326 (2018).

    Article  Google Scholar 

  64. 64.

    Flannigan, M. D. et al. Fuel moisture sensitivity to temperature and precipitation: climate change implications. Clim. Change 134, 59–71 (2016).

    Article  Google Scholar 

  65. 65.

    Wang, X. et al. Projected changes in daily fire spread across Canada over the next century. Environ. Res. Lett. 12, 025005 (2017).

    Article  Google Scholar 

  66. 66.

    Aragão, L. E. O. C. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).

    Article  Google Scholar 

  67. 67.

    Krawchuk, M. A. & Moritz, M. A. Burning issues: statistical analyses of global fire data to inform assessments of environmental change. Environmetrics 25, 472–481 (2014).

    Article  Google Scholar 

  68. 68.

    Coppola, A. I., Ziolkowski, L. A., Masiello, C. A. & Druffel, E. R. M. Aged black carbon in marine sediments and sinking particles. Geophys. Res. Lett. 41, 2427–2433 (2014).

    Article  Google Scholar 

  69. 69.

    Singh, B. P., Cowie, A. L. & Smernik, R. J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ. Sci. Technol. 46, 11770–11778 (2012).

    Article  Google Scholar 

  70. 70.

    Ziolkowski, L. A. & Druffel, E. R. M. Aged black carbon identified in marine dissolved organic carbon. Geophys. Res. Lett. 37, L16601 (2010).

    Article  Google Scholar 

  71. 71.

    Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation Global Fire Emissions Database (GFED4). J. Geophys. Res. Biogeosci. 118, 317–328 (2013).

    Article  Google Scholar 

  72. 72.

    Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 117, G04012 (2012).

    Article  Google Scholar 

  73. 73.

    van Leeuwen, T. T. et al. Biomass burning fuel consumption rates: a field measurement database. Biogeosci. Discuss. 11, 8115–8180 (2014).

    Article  Google Scholar 

  74. 74.

    van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

    Article  Google Scholar 

  75. 75.

    Veraverbeke, S., Rogers, B. M. & Randerson, J. T. Daily burned area and carbon emissions from boreal fires in Alaska. Biogeosciences 12, 3579–3601 (2015).

    Article  Google Scholar 

  76. 76.

    Andela, N. et al. Biomass burning fuel consumption dynamics in the (sub)tropics assessed from satellite. Biogeosci. Discuss. 13, 3717–3734 (2016).

    Article  Google Scholar 

  77. 77.

    Arellano, A. F., Kasibhatla, P. S., Giglio, L., van der Werf, G. R. & Randerson, J. T. Top-down estimates of global CO sources using MOPITT measurements. Geophys. Res. Lett. 31, L01104 (2004).

    Google Scholar 

  78. 78.

    Hooghiemstra, P. B. et al. Interannual variability of carbon monoxide emission estimates over South America from 2006 to 2010. J. Geophys. Res. Atmos. 117, D15308 (2012).

    Google Scholar 

  79. 79.

    Huijnen, V. et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 26886 (2016).

    Article  Google Scholar 

  80. 80.

    Castellanos, P., Boersma, K. F. & van der Werf, G. R. Satellite observations indicate substantial spatiotemporal variability in biomass burning NOx emission factors for South America. Atmos. Chem. Phys. 14, 3929–3943 (2014).

    Article  Google Scholar 

  81. 81.

    Bauwens, M. et al. Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations. Atmos. Chem. Phys. 16, 10133–10158 (2016).

    Article  Google Scholar 

  82. 82.

    Petrenko, M. et al. The use of satellite-measured aerosol optical depth to constrain biomass burning emissions source strength in the global model GOCART. J. Geophys. Res. Atmos. 117, D18212 (2012).

    Article  Google Scholar 

  83. 83.

    Bodí, M. B. et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127 (2014).

    Article  Google Scholar 

  84. 84.

    Hyde, J. C., Smith, A. M. S., Ottmar, R. D., Alvarado, E. C. & Morgan, P. The combustion of sound and rotten coarse woody debris: a review. Int. J. Wildl. Fire 20, 163 (2011).

    Article  Google Scholar 

  85. 85.

    Lutes, D. C., Keane, R. E. & Caratti, J. F. A surface fuel classification for estimating fire effects. Int. J. Wildl. Fire 18, 802 (2009).

    Article  Google Scholar 

  86. 86.

    Sandberg, D. V., Ottmar, R. D. & Cushon, G. H. Characterizing fuels in the 21st century. Int. J. Wildl. Fire 10, 381 (2001).

    Article  Google Scholar 

  87. 87.

    Hammes, K. et al. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Glob. Biogeochem. Cycles 21, GB3016 (2007).

    Article  Google Scholar 

  88. 88.

    Zimmerman, A. R. & Mitra, S. Trial by fire: on the terminology and methods used in pyrogenic organic carbon research. Front. Earth Sci. 5, 95 (2017).

    Article  Google Scholar 

  89. 89.

    Thurner, M. et al. Carbon stock and density of northern boreal and temperate forests. Glob. Ecol. Biogeogr. 23, 297–310 (2014).

    Article  Google Scholar 

  90. 90.

    Friedl, M. & Sulla-Menashe, D. MCD12C1 v006: MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg (2015);

Download references


This work was funded by a Leverhulme Trust Research Project Grant awarded to S.H.D. (RPG-2014-095), a Swansea University College of Science Fund awarded to M.W.J., a Vici grant awarded to G.R.vdW. by the Netherlands Organisation for Scientific Research (NWO), and a European Union Horizon 2020 research and innovation grant awarded to C.S. (Marie Skłodowska-Curie grant 663830). We thank C. Aponte, C. Boot, G. Clay, G. Cook, F. Cotrufo, P. Fearnside, B. Goforth, R. Graham, M. Haddix, P. Homann, D. Hurst and M. Jenkins for their assistance during the collation of the global dataset of PyC production factors. We also thank B. de Groot for his part in securing funding of the Leverhulme Trust Grant.

Author information




M.W.J., C.S. and S.H.D. designed the study. S.H.D. led the Leverhulme Trust Research Project grant that funded the main body of the work. M.W.J. collated the PyC production factor dataset with support from C.S. C.S. and S.H.D. provided unpublished PyC production data. G.R.vdW. provided access to the GFED4s code. M.W.J. adapted the GFED4s code to include PyC production with the support of G.R.vdW. M.W.J. conducted the formal analysis of the production factor dataset and model outputs. All the authors contributed to the interpretation of the results. M.W.J. wrote the manuscript and produced all the figures. All the authors contributed to the refinement of the manuscript.

Corresponding author

Correspondence to Matthew W. Jones.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary description, Supplementary Figs. 1–6 and Supplementary Tables 1–4.

Supplementary Data 1

The global dataset of the PyC production factors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jones, M.W., Santín, C., van der Werf, G.R. et al. Global fire emissions buffered by the production of pyrogenic carbon. Nat. Geosci. 12, 742–747 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing