Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Last phase of the Little Ice Age forced by volcanic eruptions


During the first half of the nineteenth century, several large tropical volcanic eruptions occurred within less than three decades. The global climate effects of the 1815 Tambora eruption have been investigated, but those of an eruption in 1808 or 1809 whose source is unknown and the eruptions in the 1820s and 1830s have received less attention. Here we analyse the effect of the sequence of eruptions in observations, global three-dimensional climate field reconstructions and coupled climate model simulations. All the eruptions were followed by substantial drops of summer temperature over the Northern Hemisphere land areas. In addition to the direct radiative effect, which lasts 2–3 years, the simulated ocean–atmosphere heat exchange sustained cooling for several years after these eruptions, which affected the slow components of the climate system. Africa was hit by two decades of drought, global monsoons weakened and the tracks of low-pressure systems over the North Atlantic moved south. The low temperatures and increased precipitation in Europe triggered the last phase of the advance of Alpine glaciers. Only after the 1850s did the transition into the period of anthropogenic warming start. We conclude that the end of the Little Ice Age was marked by the recovery from a sequence of volcanic eruptions, which makes it difficult to define a single pre-industrial baseline.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Climate series for the last part of the LIA.
Fig. 2: Post-volcanic anomalies in April–September in the palaeo-reanalysis (ensemble mean).
Fig. 3: Change in global monsoon systems.
Fig. 4: Global annual means of energy fluxes, temperature and ocean heat content in coupled model simulations (ensemble mean and range).
Fig. 5: Annual mean sea-surface temperature changes in HadCM3, FUPSOL and reconstructions following the four volcanic eruptions of 1808, 1815, 1831 and 1835.

Data availability

The palaeo-reanalysis is available from and instrumental temperature data from The dryness indices for Africa are available from and the Australian monsoon data from The pressure data used are available from ISPD, FUPSOL and HadCM3 model output can be downloaded from

Code availability

Code for the calculation of subtropical jet latitude and northern topical edge is from Code and input data for the reconstruction of Alpine summer temperature can be downloaded from


  1. 1.

    Zumbühl, H. J., Steiner, D. & Nussbaumer, S. U. 19th century glacier representations and fluctuations in the central and western European Alps: an interdisciplinary approach. Glob. Plan. Change 60, 42–57 (2008).

    Article  Google Scholar 

  2. 2.

    Leclercq, P. W. et al. A data set of worldwide glacier length fluctuations. Cryosphere 8, 659–672 (2014).

    Article  Google Scholar 

  3. 3.

    Miller, G. H. et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 39, L02708 (2012).

    Article  Google Scholar 

  4. 4.

    PAGES 2k Consortium.Continental-scale temperature variability during the last two millennia. Nat. Geosci. 6, 339–346 (2013).

    Article  Google Scholar 

  5. 5.

    Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 383–464 (Cambridge Univ. Press, 2013).

  6. 6.

    Crowley, T. J., Obrochta, S. P. & Liu, J. Recent global temperature ‘plateau’ in the context of a new proxy reconstruction. Earth’s Future 2, 281–294 (2014).

    Article  Google Scholar 

  7. 7.

    Abram, N. J. et al. Early onset of industrial-era warming across the oceans and continents. Nature 536, 411–418 (2016).

    Article  Google Scholar 

  8. 8.

    Guevara-Murua, A., Williams, C. A., Hendy, E. J., Rust, A. C. & Cashman, K. V. Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the unknown 1809 eruption? Clim. Past 10, 1707–1722 (2014).

    Article  Google Scholar 

  9. 9.

    Garrison, C. S., Kilburn, C. R. J. & Edwards, S. J. The 1831 eruption of Babuyan Claro that never happened: has the source of one of the largest volcanic climate forcing events of the nineteenth century been misattributed? J. Appl. Volcanol. 7, 8 (2018).

    Article  Google Scholar 

  10. 10.

    Schurer, A., Tett, S. F. B. & Hegerl, G. C. Small influence of solar variability on climate over the last millennium. Nat. Geosci. 7, 104–108 (2014).

    Article  Google Scholar 

  11. 11.

    Schurer, A., Hegerl, G. C., Mann, M., Tett, S. F. B. & Phipps, S. Separating forced from chaotic variability over the last millennium. J. Clim. 26, 6954–6973 (2013).

    Article  Google Scholar 

  12. 12.

    Raible, C. C. et al. Tambora 1815 as a test case for high impact volcanic eruptions: Earth system effects. WIREs Clim. Change 7, 569–589 (2016).

    Article  Google Scholar 

  13. 13.

    Franke, J., Brönnimann, S., Bhend, J. & Brugnara, Y. A monthly global paleo-reanalysis of the atmosphere from 1600 to 2005 for studying past climatic variations. Sci. Data 4, 170076 (2017).

    Article  Google Scholar 

  14. 14.

    Lawrimore, J. H. et al. An overview of the global historical climatology network monthly mean temperature data set, version 3. J. Geophys. Res. 116, D19121 (2011).

    Article  Google Scholar 

  15. 15.

    Trachsel, M. et al. Multi-archive summer temperature reconstruction for the European Alps. Quat. Sci. Rev. 46, 66–79 (2012).

    Article  Google Scholar 

  16. 16.

    Nicholson, S. E., Dezfuli, A. K. & Klotter, D. A two-century precipitation dataset for the continent of Africa. Bull. Am. Meteorol. Soc. 93, 1219–1231 (2012).

    Article  Google Scholar 

  17. 17.

    Muthers, S. et al. The coupled atmosphere–chemistry–ocean model SOCOL-MPIOM. Geosci. Model Dev. 7, 2157–2179 (2014).

    Article  Google Scholar 

  18. 18.

    Sigl, M. et al. 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-Alpine glaciers. Cryosphere 12, 3311–3331 (2018).

    Article  Google Scholar 

  19. 19.

    Lüthi, M. P. Little Ice Age climate reconstruction from ensemble reanalysis of Alpine glacier fluctuations. Cryosphere 8, 639–650 (2014).

    Article  Google Scholar 

  20. 20.

    Böhm, R. et al. The early instrumental warm bias: a solution for long central European temperatures series 1760–2007. Clim. Change 101, 41–67 (2010).

    Article  Google Scholar 

  21. 21.

    PAGES 2k Consortium. Consistent multi-decadal variability in global temperature reconstructions and simulations over the common era. Nat. Geosci. (2019).

  22. 22.

    Hawkins, E. et al. Estimating changes in global temperature since the preindustrial period. Bull. Am. Meteorol. Soc. 98, 1841–1856 (2017).

    Article  Google Scholar 

  23. 23.

    Schurer, A. P., Mann, M. E., Hawkins, E., Tett, S. F. & Hegerl, G. C. Importance of the pre-industrial baseline for likelihood of exceeding Paris goals. Nat. Clim. Change 7, 563–567 (2017).

    Article  Google Scholar 

  24. 24.

    Iles, C. & Hegerl, G. C. The global precipitation response to volcanic eruptions in the CMIP5 models. Env. Res. Lett. 9, 104012 (2014).

    Article  Google Scholar 

  25. 25.

    Sontakke, N. A., Singh, N. & Singh, H. N. Instrumental period rainfall series of the Indian region (ad 1813–2005): revised reconstruction, update and analysis. Holocene 18, 1055–1066 (2008).

    Article  Google Scholar 

  26. 26.

    Gallego, D., García-Herrera, R., Peña-Ortiz, C. & Ribera, P. The steady enhancement of the Australian summer monsoon in the last 200 years. Sci. Rep. 7, 16166 (2017).

    Article  Google Scholar 

  27. 27.

    Hasselmann, K. Stochastic climate models part I. Theory. Tellus 28, 473–485 (1976).

    Article  Google Scholar 

  28. 28.

    Yu, Y. et al. Observed positive vegetation–rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism. Nat. Commun. 8, 1873 (2017).

    Article  Google Scholar 

  29. 29.

    Held, I. M. et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Clim. 23, 2418–2427 (2010).

    Article  Google Scholar 

  30. 30.

    Gupta, M. & Marshall, J. The climate response to multiple volcanic eruptions mediated by ocean heat uptake: damping processes and accumulation potential. J. Clim. 31, 8669–8687 (2018).

    Article  Google Scholar 

  31. 31.

    Ding, Y. et al. Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 simulations. J. Geophys. Res. Oceans 119, 5622–5637 (2014).

    Article  Google Scholar 

  32. 32.

    Stenchikov, G. et al. Volcanic signals in oceans. J. Geophys. Res. 114, D16104 (2009).

    Article  Google Scholar 

  33. 33.

    Gregory, J. M. et al. Climate models without preindustrial volcanic forcing underestimate historical ocean thermal expansion. Geophys. Res. Lett. 40, 1600–1604 (2013).

    Article  Google Scholar 

  34. 34.

    Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1137–1216 (Cambridge Univ. Press, 2013).

  35. 35.

    Maher, N., McGregor, S., England, M. H. & Sen Gupta, A. Effects of volcanism on tropical variability. Geophys. Res. Lett. 42, 6024–6033 (2015).

    Article  Google Scholar 

  36. 36.

    Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and medieval climate anomaly. Science 326, 1256–1260 (2009).

    Article  Google Scholar 

  37. 37.

    Franke, J., Frank, D., Raible, C. C., Esper, J. & Brönnimann, S. Spectral biases in tree-ring climate proxies. Nat. Clim. Change 3, 360–364 (2013).

    Article  Google Scholar 

  38. 38.

    Zumbühl, H. J., Nussbaumer, S. U., Holzhauser, H. & Wolf, R. Die Grindelwaldgletscher—Kunst und Wissenschaft (Haupt, 2016).

  39. 39.

    Nussbaumer, S. U., Zumbühl, H. J. & Steiner, D. Fluctuations of the Mer de Glace (Mont Blanc area, France) ad 1500–2050. Part I: the history of the Mer de Glace ad 1570–2003 according to pictorial and written documents. Z. Gletsch. Glazialgeol. 40, 5–140 (2007).

    Google Scholar 

  40. 40.

    Nussbaumer, S. U. & Zumbühl, H. J. The Little Ice Age history of the Glacier des Bossons (Mont Blanc massif, France): a new high-resolution glacier length curve based on historical documents. Clim. Change 111, 301–334 (2012).

    Article  Google Scholar 

  41. 41.

    Küttel, M., Luterbacher, J. & Wanner, H. Multidecadal changes in winter circulation–climate relationship in Europe: frequency variations, within-type modifications, and long-term trends. Clim. Dyn. 36, 957–972 (2011).

    Article  Google Scholar 

  42. 42.

    Brönnimann, S. et al. Causes for increased flood frequency in central Europe in the 19th century. Clim. Past Discuss. (2019).

  43. 43.

    Wegmann, M. et al. Volcanic influence on European summer precipitation through monsoons: possible cause for ‘years without a summer’. J. Clim. 27, 3683–3691 (2014).

    Article  Google Scholar 

  44. 44.

    Alfaro-Sánchez, R. et al. Climatic and volcanic forcing of tropical belt northern boundary over the past 800 years. Nat. Geosci. 11, 933–938 (2018).

    Article  Google Scholar 

  45. 45.

    Gray, S. T., Graumlich, L. J., Betancourt, J. L. & Pederson, G. T. A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 ad. Geophys. Res. Lett. 31, L12205 (2004).

    Article  Google Scholar 

  46. 46.

    Martin, E. R. & Thorncroft, C. D. The impact of the AMO on the West African monsoon annual cycle. Q. J. R. Meteorol. Soc. 140, 31–46 (2014).

    Article  Google Scholar 

  47. 47.

    Krishnamurthy, L. & Krishnamurthy, V. Teleconnections of Indian monsoon rainfall with AMO and Atlantic tripole. Clim. Dyn. 46, 2269–2285 (2016).

    Article  Google Scholar 

  48. 48.

    Brönnimann, S. et al. Southward shift of the northern tropical belt from 1945 to 1980. Nat. Geosci. 8, 969–974 (2015).

    Article  Google Scholar 

  49. 49.

    Birkel, S. D., Mayewski, P. A., Maasch, K. A., Kurbatov, A. V. & Lyon, B. Evidence for a volcanic underpinning of the Atlantic Multidecadal Oscillation. npj Clim. Atmos. Sci. 1, 24 (2018).

    Article  Google Scholar 

  50. 50.

    Anet, J. G. et al. Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum. Clim. Past 10, 921–938 (2014).

    Article  Google Scholar 

  51. 51.

    Malik, A., Brönnimann, S. & Perona, P. Statistical link between external climate forcings and modes of ocean variability. Clim. Dyn. 50, 3649–3670 (2018).

    Article  Google Scholar 

  52. 52.

    Hegerl, G. C., Brönnimann, S., Schurer, A. & Cowan, T. The early 20th century warming: anomalies, causes, and consequences. WIREs Clim. Change 9, e522 (2018).

    Article  Google Scholar 

  53. 53.

    Brönnimann, S. Early twentieth-century warming. Nat. Geosci. 2, 735–736 (2009).

    Article  Google Scholar 

  54. 54.

    Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).

    Article  Google Scholar 

  55. 55.

    Shapiro, A. I. et al. A new approach to long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron. Astrophys. 529, A67 (2011).

    Article  Google Scholar 

  56. 56.

    Pope, V. D. et al. The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim. Dyn. 16, 123–146 (2000).

    Article  Google Scholar 

  57. 57.

    Gordon, C. et al. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dyn. 16, 147–168 (2000).

    Article  Google Scholar 

  58. 58.

    Steinhilber, F., Beer, J. & Fröhlich, C. Total solar irradiance during the Holocene. Geophys. Res. Lett. 36, L19704 (2009).

    Article  Google Scholar 

  59. 59.

    Wang, Y.-M., Lean, J. L. & Sheeley, N. R. Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys. J. 625, 522–538 (2005).

    Article  Google Scholar 

  60. 60.

    Crowley, T. J. & Unterman, M. B. Technical details concerning development of a 1200-yr proxy index for global volcanism. Earth Syst. Sci. Data 5, 187–197 (2013).

    Article  Google Scholar 

  61. 61.

    Smith, D. M. et al. Improved surface temperature prediction for the coming decade from a global climate model. Science 317, 796–799 (2007).

    Article  Google Scholar 

  62. 62.

    Martens, H. & Naes, T. Multivariate Calibration (Wiley, 1989).

  63. 63.

    Kruschke, J. Doing Bayesian Data Analysis. A Tutorial with R, JAGS, and Stan (Academic, 2014).

  64. 64.

    Brugnara, Y. et al. A collection of sub-daily pressure and temperature observations for the early instrumental period with a focus on the ‘year without a summer’ 1816. Clim. Past 11, 1027–1047 (2015).

    Article  Google Scholar 

  65. 65.

    Cram, T. A. et al. The international surface pressure databank version 2. Geosci. Data J. 2, 31–46 (2015).

    Article  Google Scholar 

  66. 66.

    Duchon, C. E. Lanczos filtering in one and two dimensions. J. Appl. Meteorol. 18, 1016–1022 (1979).

    Article  Google Scholar 

  67. 67.

    Compo, G. P. et al. The twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 137, 1–28 (2011).

    Article  Google Scholar 

Download references


The work was supported by the Swiss National Science Foundation (projects 162668, 169676, CRSII2-147659 and a personal grant to M.T.), by MeteoSwiss (CH2018) and by H2020 (ERC Grant PALAEO-RA, 787574). Simulations were conducted at the Swiss Supercomputer Centre CSCS. G.C.H. and A.S. were supported by the ERC-funded project TITAN (EC-320691) and by NERC under the Belmont forum, grant PacMedy (NE/P006752/1).

Author information




S.B. designed the study and performed most of the analyses. J.Franke performed the reanalysis. C.C.R. performed the FUPSOL model simulations and A.S. performed the HadCM3 model simulations. C.C.R., A.M., M.W. and A.S. processed the model simulations. M.T. performed the temperature reconstruction. J.Franke and J.Flückiger performed some of the analyses, S.U.N., D.S. and H.J.Z. analysed the glacier data. G.C.H. assisted the analysis and interpretation of the model data. All the authors engaged in the discussion of the results and contributed to writing the paper.

Corresponding author

Correspondence to Stefan Brönnimann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures

Supplementary Table 1

Data behind Fig. 1

Supplementary Table 2

Data behind Fig. 3

Supplementary Table 3

Data behind Supplementary Fig. 1

Supplementary Table 4

Data behind Supplementary Fig. 2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brönnimann, S., Franke, J., Nussbaumer, S.U. et al. Last phase of the Little Ice Age forced by volcanic eruptions. Nat. Geosci. 12, 650–656 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing