Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era


Multidecadal surface temperature changes may be forced by natural as well as anthropogenic factors, or arise unforced from the climate system. Distinguishing these factors is essential for estimating sensitivity to multiple climatic forcings and the amplitude of the unforced variability. Here we present 2,000-year-long global mean temperature reconstructions using seven different statistical methods that draw from a global collection of temperature-sensitive palaeoclimate records. Our reconstructions display synchronous multidecadal temperature fluctuations that are coherent with one another and with fully forced millennial model simulations from the Coupled Model Intercomparison Project Phase 5 across the Common Era. A substantial portion of pre-industrial (1300–1800 ce) variability at multidecadal timescales is attributed to volcanic aerosol forcing. Reconstructions and simulations qualitatively agree on the amplitude of the unforced global mean multidecadal temperature variability, thereby increasing confidence in future projections of climate change on these timescales. The largest warming trends at timescales of 20 years and longer occur during the second half of the twentieth century, highlighting the unusual character of the warming in recent decades.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Global mean surface temperature history over the Common Era.
Fig. 2: MDV in reconstructions and models and volcanic forcing over the past millennium.
Fig. 3: Pre-industrial forcing response and magnitude of unforced MDV.
Fig. 4: Multidecadal temperature trends over the Common Era.

Data availability

The palaeotemperature records (PAGES 2k v.2.0.0) used for all reconstructions are available at: CMIP5 model runs are available at: The primary outcomes for this study, including the temperature reconstructions for each method and the data used to construct the key figures including external forcing datasets used herein, model GMST and the screened input proxy data matrix, are available through the World Data Service (NOAA) Palaeoclimatology ( and Figshare (

Code availability

The code to generate the figures is available along with the data in the repository listed above under Data availability.


  1. 1.

    Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 383–464 (IPCC, Cambridge Univ. Press, 2013).

  2. 2.

    Abram, N. J. et al. Early onset of industrial-era warming across the oceans and continents. Nature 536, 411–418 (2016).

    Google Scholar 

  3. 3.

    Hegerl, G. C., Brönnimann, S., Schurer, A. & Cowan, T. The early 20th century warming: anomalies, causes, and consequences. WIREsClim. Change 9, e522 (2018).

    Google Scholar 

  4. 4.

    Medhaug, I., Stolpe, M. B., Fischer, E. M. & Knutti, R. Reconciling controversies about the ‘global warming hiatus’. Nature 545, 41–47 (2017).

    Google Scholar 

  5. 5.

    Deser, C. & Phillips, A. An overview of decadal-scale sea surface temperature variability in the observational record. PAGES Mag. 25, 2–6 (2017).

    Google Scholar 

  6. 6.

    Keenlyside, N. S., Latif, M., Jungclaus, J., Kornblueh, L. & Roeckner, E. Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453, 84–88 (2008).

    Google Scholar 

  7. 7.

    Stott, P. A. et al. External control of 20th century temperature by natural and anthropogenic forcings. Science 290, 2133–2137 (2000).

    Google Scholar 

  8. 8.

    Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role of natural variability in future North American climate. Nat. Clim. Change 2, 775–779 (2012).

    Google Scholar 

  9. 9.

    Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).

    Google Scholar 

  10. 10.

    Cassou, C. et al. Decadal climate variability and predictability: challenges and opportunities. Bull. Am. Meteorol. Soc. 99, 479–490 (2018).

    Google Scholar 

  11. 11.

    Santer, B. D. et al. Causes of differences in model and satellite tropospheric warming rates. Nat. Geosci. 10, 478–485 (2017).

    Google Scholar 

  12. 12.

    Henley, B. J. et al. Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation. Environ. Res. Lett. 12, 044011 (2017).

    Google Scholar 

  13. 13.

    Kajtar, J. B. et al. Global mean surface temperature response to large-scale patterns of variability in observations and CMIP5. Geophys. Res. Lett. 46, 2232–2241 (2019).

    Google Scholar 

  14. 14.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Google Scholar 

  15. 15.

    Laepple, T. & Huybers, P. Ocean surface temperature variability: large model–data differences at decadal and longer periods. Proc. Natl Acad. Sci. USA 111, 16682–16687 (2014).

    Google Scholar 

  16. 16.

    Rehfeld, K., Münch, T., Ho, S. L. & Laepple, T. Global patterns of declining temperature variability from the last glacial maximum to the holocene. Nature 554, 356–359 (2018).

    Google Scholar 

  17. 17.

    Zhu, F. et al. Climate models can correctly simulate the continuum of global-average temperature variability. Proc. Natl Acad. Sci. USA 116, 8728–8733 (2019).

    Google Scholar 

  18. 18.

    Ding, Y. et al. Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 simulations. J. Geophys. Res. Oceans 119, 5622–5637 (2014).

    Google Scholar 

  19. 19.

    Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. 117, D08101 (2012).

    Google Scholar 

  20. 20.

    Meehl, G. A. et al. Decadal prediction. Bull. Am. Meteorol. Soc. 90, 1467–1486 (2009).

    Google Scholar 

  21. 21.

    PAGES2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 4, 170088 (2017).

  22. 22.

    Christiansen, B. & Ljungqvist, F. C. Challenges and perspectives for large-scale temperature reconstructions of the past two millennia. Rev. Geophys. 55, 40–96 (2017).

    Google Scholar 

  23. 23.

    Wang, J., Emile-Geay, J., Guillot, D., McKay, N. P. & Rajaratnam, B. Fragility of reconstructed temperature patterns over the Common Era: implications for model evaluation. Geophys. Res. Lett. 42, 7162–7170 (2015).

    Google Scholar 

  24. 24.

    Smerdon, J. E. & Pollack, H. N. Reconstructing Earth’s surface temperature over the past 2000 years: the science behind the headlines. WIREs Clim. Change 7, 746–771 (2016).

    Google Scholar 

  25. 25.

    Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

    Google Scholar 

  26. 26.

    Rehfeld, K., Trachsel, M., Telford, R. J. & Laepple, T. Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world. Clim. Past 12, 2255–2270 (2016).

    Google Scholar 

  27. 27.

    Ljungqvist, F. C., Krusic, P. J., Brattström, G. & Sundqvist, H. S. Northern Hemisphere temperature patterns in the last 12 centuries. Clim. Past 8, 227–249 (2012).

    Google Scholar 

  28. 28.

    Esper, J. et al. Ranking of tree-ring based temperature reconstructions of the past millennium. Quat. Sci. Rev. 145, 134–151 (2016).

    Google Scholar 

  29. 29.

    Esper, J., Cook, E. R., Krusic, P. J., Peters, K. & Schweingruber, F. H. Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res. 59, 81–98 (2003).

    Google Scholar 

  30. 30.

    Klippel, L., George, S. S., Büntgen, U., Krusic, P. J. & Esper, J. Differing pre-industrial cooling trends between tree-rings and lower-resolution temperature proxies. Clim. Past Discuss. (2019).

  31. 31.

    McGregor, H. V. et al. Robust global ocean cooling trend for the pre-industrial Common Era. Nat. Geosci. 8, 671–677 (2015).

    Google Scholar 

  32. 32.

    St. George, S. An overview of tree-ring width records across the Northern Hemisphere. Quat. Sci. Rev. 95, 132–150 (2014).

    Google Scholar 

  33. 33.

    Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M. & Anchukaitis, K. N. Applications of proxy system modeling in high resolution paleoclimatology. Quat. Sci. Rev. 76, 16–28 (2013).

    Google Scholar 

  34. 34.

    Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).

    Google Scholar 

  35. 35.

    Smerdon, J. E. Climate models as a test bed for climate reconstruction methods: pseudoproxy experiments. WIREs Clim. Change 3, 63–77 (2012).

    Google Scholar 

  36. 36.

    Wang, J., Emile-Geay, J., Guillot, D., Smerdon, J. E. & Rajaratnam, B. Evaluating climate field reconstruction techniques using improved emulations of real-world conditions. Clim. Past 10, 1–19 (2014).

    Google Scholar 

  37. 37.

    Toohey, M. & Sigl, M. Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth Syst. Sci. Data 9, 809–831 (2017).

    Google Scholar 

  38. 38.

    Crowley, T. J. & Unterman, M. B. Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth Syst. Sci. Data 5, 187–197 (2013).

    Google Scholar 

  39. 39.

    Gao, C., Robock, A. & Ammann, C. Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res. 113, D23111 (2008).

    Google Scholar 

  40. 40.

    Marotzke, J. & Forster, P. M. Forcing, feedback and internal variability in global temperature trends. Nature 517, 565–570 (2015).

    Google Scholar 

  41. 41.

    Allen, M. R. & Stott, P. A. Estimating signal amplitudes in optimal fingerprinting, part I: theory. Clim. Dynam. 21, 477–491 (2003).

    Google Scholar 

  42. 42.

    Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 867–952 (IPCC, Cambridge Univ. Press, 2013).

  43. 43.

    Schurer, A. P., Hegerl, G. C., Mann, M. E., Tett, S. F. B. & Phipps, S. J. Separating forced from chaotic climate variability over the past millennium. J. Clim. 26, 6954–6973 (2013).

    Google Scholar 

  44. 44.

    Otto-Bliesner, B. L. et al. Climate variability and change since 850 CE: an ensemble approach with the community earth system model. Bull. Am. Meteorol. Soc. 97, 735–754 (2016).

    Google Scholar 

  45. 45.

    Schurer, A. P., Tett, S. F. B. & Hegerl, G. C. Small influence of solar variability on climate over the past millennium. Nat. Geosci. 7, 104–108 (2013).

    Google Scholar 

  46. 46.

    Taricco, C., Mancuso, S., Ljungqvist, F. C., Alessio, S. & Ghil, M. Multispectral analysis of Northern Hemisphere temperature records over the last five millennia. Clim. Dynam. 45, 83–104 (2015).

    Google Scholar 

  47. 47.

    Anchukaitis, K. J. et al. Last millennium Northern Hemisphere summer temperatures from tree rings: part II, spatially resolved reconstructions. Quat. Sci. Rev. 163, 1–22 (2017).

    Google Scholar 

  48. 48.

    PAGES2k-PMIP3 group. Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium. Clim. Past 11, 1673–1699 (2015).

  49. 49.

    Frost, C. & Thompson, S. G. Correcting for regression dilution bias: comparison of methods for a single predictor variable. J. R. Stat. Soc. Ser. A 163, 173–189 (2000).

    Google Scholar 

  50. 50.

    von Storch, H. Reconstructing past climate from noisy data. Science 306, 679–682 (2004).

    Google Scholar 

  51. 51.

    Neukom, R., Schurer, A. P., Steiger, N. J. & Hegerl, G. C. Possible causes of data model discrepancy in the temperature history of the last Millennium. Sci. Rep. 8, 7572 (2018).

    Google Scholar 

  52. 52.

    Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015).

    Google Scholar 

  53. 53.

    Jungclaus, J. H. et al. The PMIP4 contribution to CMIP6—part 3: the last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations. Geosci. Model Dev. 10, 4005–4033 (2017).

    Google Scholar 

  54. 54.

    Diffenbaugh, N. S., Pal, J. S., Trapp, R. J. & Giorgi, F. Fine-scale processes regulate the response of extreme events to global climate change. Proc. Natl Acad. Sci. USA 104, 15774–15778 (2005).

    Google Scholar 

  55. 55.

    Bradley, R. S., Wanner, H. & Diaz, H. F. The medieval quiet period. Holocene 26, 990–993 (2016).

    Google Scholar 

  56. 56.

    Neukom, R. et al. Inter-hemispheric temperature variability over the past millennium. Nat. Clim. Change 4, 362–367 (2014).

    Google Scholar 

  57. 57.

    Goosse, H. Climate System Dynamics and Modelling (Cambridge Univ. Press, 2015).

  58. 58.

    Miller, G. H. et al. Abrupt onset of the little ice age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 39, L02708 (2012).

    Google Scholar 

  59. 59.

    Brönnimann, S. et al. Last phase of the Little Ice Age forced by volcanic eruptions. Nat. Geosci. (2019).

  60. 60.

    Brönnimann, S. Early twentieth-century warming. Nat. Geosci. 2, 735–736 (2009).

    Google Scholar 

  61. 61.

    Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 741–866 (IPCC, Cambridge Univ. Press, 2013).

  62. 62.

    Atwood, A. R., Wu, E., Frierson, D. M. W., Battisti, D. S. & Sachs, J. P. Quantifying climate forcings and feedbacks over the last millennium in the CMIP5–PMIP3 models. J. Clim. 29, 1161–1178 (2016).

    Google Scholar 

  63. 63.

    IPCC Climate Change 2013: The Physical Science Basis (Cambridge Univ. Press, 2013).

  64. 64.

    Giorgi, F. & Gao, X.-J. Regional earth system modeling: review and future directions. Atmos. Ocean Sci. Lett. 11, 189–197 (2018).

    Google Scholar 

  65. 65.

    Seneviratne, S. I. et al. The many possible climates from the Paris Agreement’s aim of 1.5 °C warming. Nature 558, 41–49 (2018).

    Google Scholar 

  66. 66.

    Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl Acad. Sci. USA 105, 13252–13257 (2008).

    Google Scholar 

  67. 67.

    Luterbacher, J. et al. Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim. Dynam. 18, 545–561 (2002).

    Google Scholar 

  68. 68.

    Shi, F., Zhao, S., Guo, Z., Goosse, H. & Yin, Q. Multi-proxy reconstructions of May–September precipitation field in China over the past 500 years. Clim. Past 13, 1919–1938 (2017).

    Google Scholar 

  69. 69.

    Hanhijärvi, S., Tingley, M. P. & Korhola, A. Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region over the last 2,000 years. Clim. Dynam. 41, 2039–2060 (2013).

    Google Scholar 

  70. 70.

    Barboza, L., Li, B., Tingley, M. P. & Viens, F. G. Reconstructing past temperatures from natural proxies and estimated climate forcings using short- and long-memory models. Ann. Appl. Stat. 8, 1966–2001 (2014).

    Google Scholar 

  71. 71.

    Hakim, G. J. et al. The last millennium climate reanalysis project: framework and first results. J. Geophys. Res. Atmos. 121, 6745–6764 (2016).

    Google Scholar 

  72. 72.

    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

    Google Scholar 

  73. 73.

    Bradley, R. S. & Jones, P. D. ‘Little ice age’ summer temperature variations: their nature and relevance to recent global warming trends. Holocene 3, 367–376 (1993).

    Google Scholar 

  74. 74.

    Mann, M. E., Rutherford, S., Wahl, E. & Ammann, C. Testing the fidelity of methods used in proxy-based reconstructions of past climate. J. Clim. 18, 4097–4107 (2005).

    Google Scholar 

  75. 75.

    Jones, P. et al. High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19, 3–49 (2009).

    Google Scholar 

  76. 76.

    Ljungqvist, F. C. A new reconstruction of temperature variability in the extra-tropical northern hemisphere during the last two millennia. Geogr. Ann. Ser. A 92, 339–351 (2010).

    Google Scholar 

  77. 77.

    Cook, E. R. et al. Asian monsoon failure and megadrought during the last millennium. Science 328, 486–489 (2010).

    Google Scholar 

  78. 78.

    Gergis, J., Neukom, R., Gallant, A. J. E. & Karoly, D. J. Australasian temperature reconstructions spanning the last millennium. J. Clim. 29, 5365–5392 (2016).

    Google Scholar 

  79. 79.

    Neukom, R. et al. Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Clim. Dynam. 37, 35–51 (2011).

    Google Scholar 

  80. 80.

    Taylor, M. H., Losch, M., Wenzel, M. & Schröter, J. On the sensitivity of field reconstruction and prediction using empirical orthogonal functions derived from gappy data. J. Clim. 26, 9194–9205 (2013).

    Google Scholar 

  81. 81.

    Mann, M. E., Bradley, R. S. & Hughes, M. K. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392, 779–787 (1998).

    Google Scholar 

  82. 82.

    Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).

    Google Scholar 

  83. 83.

    National Research Council Surface Temperature Reconstructions for the Last 2,000 Years (National Academies, 2006).

  84. 84.

    Ammann, C. M. & Wahl, E. R. The importance of the geophysical context in statistical evaluations of climate reconstruction procedures. Climatic Change 85, 71–88 (2007).

    Google Scholar 

  85. 85.

    Wahl, E. R. & Ammann, C. M. Robustness of the Mann, Bradley, Hughes reconstruction of Northern Hemisphere surface temperatures: examination of criticisms based on the nature and processing of proxy climate evidence. Climatic Change 85, 33–69 (2007).

    Google Scholar 

  86. 86.

    McShane, B. B. & Wyner, A. J. A statistical analysis of multiple temperature proxies: Are reconstructions of surface temperatures over the last 1000 years reliable? Ann. Appl. Stat. 5, 5–44 (2011).

    Google Scholar 

  87. 87.

    Wahl, E. R. & Smerdon, J. E. Comparative performance of paleoclimate field and index reconstructions derived from climate proxies and noise-only predictors. Geophys. Res. Lett. 39, L06703 (2012).

    Google Scholar 

  88. 88.

    Xoplaki, E. European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys. Res. Lett. 32, L15713 (2005).

    Google Scholar 

  89. 89.

    Pauling, A., Luterbacher, J., Casty, C. & Wanner, H. Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim. Dynam. 26, 387–405 (2006).

    Google Scholar 

  90. 90.

    Küttel, M. et al. The importance of ship log data: reconstructing North Atlantic, European and mediterranean sea level pressure fields back to 1750. Clim. Dynam. 34, 1115–1128 (2010).

    Google Scholar 

  91. 91.

    Neukom, R. et al. Multi-centennial summer and winter precipitation variability in southern South America. Geophys. Res. Lett. 37, L14708 (2010).

    Google Scholar 

  92. 92.

    Wang, J. et al. Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years. Nat. Geosci. 10, 512–517 (2017).

    Google Scholar 

  93. 93.

    Schneider, T. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J. Clim. 14, 853–871 (2001).

    Google Scholar 

  94. 94.

    Fierro, R., Golub, G., Hansen, P. & O’Leary, D. Regularization by truncated total least squares. SIAM J. Sci. Comput. 18, 1223–1241 (1997).

    Google Scholar 

  95. 95.

    Shi, F., Yang, B. & Gunten, L. V. Preliminary multiproxy surface air temperature field reconstruction for China over the past millennium. Sci. China Earth Sci. 55, 2058–2067 (2012).

    Google Scholar 

  96. 96.

    Emile-Geay, J., Cobb, K. M., Mann, M. E. & Wittenberg, A. T. Estimating central equatorial pacific SST variability over the past millennium. Part I: methodology and validation. J. Clim. 26, 2302–2328 (2013).

    Google Scholar 

  97. 97.

    PAGES2k Consortium. Continental-scale temperature variability during the past two millennia. Nat. Geosci. 6, 339–346 (2013).

  98. 98.

    Christiansen, B. & Ljungqvist, F. C. Reconstruction of the extratropical NH mean temperature over the last millennium with a method that preserves low-frequency variability. J. Clim. 24, 6013–6034 (2011).

    Google Scholar 

  99. 99.

    Tingley, M. P. & Huybers, P. A bayesian algorithm for reconstructing climate anomalies in space and time. Part II: comparison with the regularized expectation–maximization algorithm. J. Clim. 23, 2782–2800 (2010).

    Google Scholar 

  100. 100.

    Wang, Z. et al. Human-induced erosion has offset one-third of carbon emissions from land cover change. Nat. Clim. Change 7, 345–349 (2017).

    Google Scholar 

  101. 101.

    Blasone, R.-S. et al. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling. Adv. Water Resour. 31, 630–648 (2008).

    Google Scholar 

  102. 102.

    Christiansen, B. & Ljungqvist, F. C. The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability. Clim. Past 8, 765–786 (2012).

    Google Scholar 

  103. 103.

    Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M. & Karlén, W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613–617 (2005).

    Google Scholar 

  104. 104.

    Shi, F. et al. Reconstruction of the Northern Hemisphere annual temperature change over the Common Era derived from tree rings. Quat. Sci. 35, 1051–1063 (2015).

    Google Scholar 

  105. 105.

    Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996).

    Google Scholar 

  106. 106.

    Vieira, L. E. A., Solanki, S. K., Krivova, N. A. & Usoskin, I. Evolution of the solar irradiance during the Holocene. Astron. Astrophys. 531, A6 (2011).

    Google Scholar 

  107. 107.

    Toohey, M., Stevens, B., Schmidt, H. & Timmreck, C. Easy volcanic aerosol (EVA v1.0): an idealized forcing generator for climate simulations. Geosci. Model Dev. 9, 4049–4070 (2016).

    Google Scholar 

  108. 108.

    Meinshausen, M. et al. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model Dev. 10, 2057–2116 (2017).

    Google Scholar 

  109. 109.

    Emile-Geay, J., Erb, M. P., Hakim, G. J., Steig, E. J. & Noone, D. C. Climate dynamics with the last millennium reanalysis. PAGES Mag. 25, 162 (2017).

    Google Scholar 

  110. 110.

    Steiger, N. J., Hakim, G. J., Steig, E. J., Battisti, D. S. & Roe, G. H. Assimilation of time-averaged pseudoproxies for climate reconstruction. J. Clim. 27, 426–441 (2014).

    Google Scholar 

  111. 111.

    Acevedo, W., Fallah, B., Reich, S. & Cubasch, U. Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model. Clim. Past 13, 545–557 (2017).

    Google Scholar 

  112. 112.

    Landrum, L. et al. Last millennium climate and its variability in CCSM4. J. Clim. 26, 1085–1111 (2013).

    Google Scholar 

  113. 113.

    Dee, S. G., Steiger, N. J., Emile-Geay, J. & Hakim, G. J. On the utility of proxy system models for estimating climate states over the Common Era. J. Adv. Model. Earth Syst. 8, 1164–1179 (2016).

    Google Scholar 

  114. 114.

    Becker, A. et al. A description of the global land-surface precipitation data products of the global precipitation climatology centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 5, 71–99 (2013).

    Google Scholar 

  115. 115.

    Xiao-Ge, X., Tong-Wen, W. & Jie, Z. Introduction of CMIP5 experiments carried out with the climate system models of beijing climate center. Adv. Clim. Change Res. 4, 41–49 (2013).

    Google Scholar 

  116. 116.

    Jungclaus, J. H. et al. Characteristics of the ocean simulations in the max planck institute ocean model (MPIOM) the ocean component of the MPI-earth system model. J. Adv. Model. Earth Syst. 5, 422–446 (2013).

    Google Scholar 

  117. 117.

    Giorgetta, M. A. et al. Climate and carbon cycle changes from1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J. Adv. Model. Earth Syst. 5, 572–597 (2013).

    Google Scholar 

  118. 118.

    Jungclaus, J. et al. CMIP5 Simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-P model: The past1000 Experiment, Served by ESGF (WDCC at DKRZ, 2012);

  119. 119.

    Phipps, S. J. et al. The CSIRO Mk3l climate system model version 1.0 – Part 2: Response to external forcings. Geosci. Model Dev. 5, 649–682 (2012).

    Google Scholar 

  120. 120.

    Schmidt, G. A. et al. Present-day atmospheric simulations using GISS ModelE: comparison to in situ, satellite, and reanalysis data. J. Clim. 19, 153–192 (2006).

    Google Scholar 

  121. 121.

    Ribes, A., Planton, S. & Terray, L. Application of regularised optimal fingerprinting to attribution. Part I: method, properties and idealised analysis. Clim. Dynam. 41, 2817–2836 (2013).

    Google Scholar 

  122. 122.

    Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).

    Google Scholar 

  123. 123.

    Myhre, G., Highwood, E. J., Shine, K. P. & Stordal, F. New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 25, 2715–2718 (1998).

    Google Scholar 

Download references


This is a contribution to the PAGES 2k Network. PAGES is supported by the US National Science Foundation and the Swiss Academy of Sciences. PAGES 2k Network members are acknowledged for providing input proxy data. Some calculations were run on the Ubelix cluster at the University of Bern. S. Hanhijärvi provided the PAI code. M. Grosjean, S. J. Phipps and J. Werner provided inputs at different stages of the project. R.N. is supported by Swiss NSF grant number PZ00P2_154802. K.R. is funded by DFG grant number RE3994-2/1. S.B. acknowledges funding from the European Union (project 787574). F.S. is funded by the NSFC (grants numbers 41877440; 41430531; 41690114). A.S. was supported by NERC under the Belmont forum, Grant PacMedy (grant number NE/P006752/1). B.J.H. acknowledges funding from the Australian Research Council, Melbourne Water and DELWP on Linkage Project (LP150100062) and support from the Australian Bureau of Meteorology. B.J.H. also acknowledges support from the ARC Centre of Excellence for Climate Extremes (CE170100023).

Author information




R.N. coordinated the project. R.N. and J.E.-G. provided and generated input data. R.N. (PCR, CPS, PAI), F.S. (OIE, M08), M.P.E (DA) and L.A.B (BHM) developed and performed the indicated GMST reconstructions. R.N., K.R. and M.N.E. analysed reconstruction results. L.L. and A.S. performed the D&A analysis. F.Z. calculated the solar cross-wavelet analysis. K.R. performed the EBM analyses. J.F. and V.V. contributed to other data analysis. R.N. made the figures. R.N., D.S.K., M.N.E. and K.R. wrote the paper. L.A.B., S.B., J.E-.G., M.P.E., M.N.E., J.F., G.J.H., B.J.H., D.S.K., F.C.L., R.N., N.M., K.R., A.S., F.S. and L.v.G. designed the study, discussed the results and contributed to the writing.

Corresponding author

Correspondence to Raphael Neukom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

PAGES 2k Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 12, 643–649 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing