Early Moon formation inferred from hafnium–tungsten systematics

Abstract

The date of the Moon-forming impact places an important constraint on Earth’s origin. Lunar age estimates range from about 30 Myr to 200 Myr after Solar System formation. Central to this age debate is the greater abundance of 182W inferred for the silicate Moon than for the bulk silicate Earth. This compositional difference has been explained as a vestige of less late accretion to the Moon than to the Earth after core formation. Here we present high-precision trace element composition data from inductively coupled plasma mass spectrometry for a wide range of lunar samples. Our measurements show that the Hf/W ratio of the silicate Moon is higher than that of the bulk silicate Earth. By combining these data with experimentally derived partition coefficients, we found that the 182W excess in lunar samples can be explained by the decay of the now extinct 182Hf to 182W. 182Hf was only extant for the first 60 Myr after the Solar System formation. We conclude that the Moon formed early, approximately 50 Myr after the Solar System, and that the excess 182W of the silicate Moon is unrelated to late accretion.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: New U/W versus Hf/W data measured in lunar samples compared to crystallization and melting models for the LMO35.
Fig. 2: Scenarios that account for the higher Hf/W of the BSM.
Fig. 3: The effect of lunar core formation on the Hf/W ratio of the silicate Moon.
Fig. 4: Tungsten isotope composition (μ182W) of the silicate Moon as a function of the lunar Hf/W ratio and formation age.

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its Supplementary Information files.

References

  1. 1.

    Canup, R. M. Forming a moon with an Earth-like composition via a giant impact. Science 338, 1052–1055 (2012).

  2. 2.

    Melosh, H. J. New approaches to the Moon’s isotopic crisis. Phil. Trans. Royal Soc. A 372, 20130168 (2014).

  3. 3.

    Zhang, J., Dauphas, N., Davis, A. M., Leya, I. & Fedkin, A. The proto-Earth as a significant source of lunar material. Nat. Geosci. 5, 251–255 (2012).

  4. 4.

    Weyer, S. et al. Iron isotope fractionation during planetary differentiation. Earth Planet. Sci. Lett. 240, 251–264 (2005).

  5. 5.

    Armytage, R., Georg, R., Williams, H. & Halliday, A. Silicon isotopes in lunar rocks: implications for the Moon’s formation and the early history of the Earth. Geochim. Cosmochim. Acta 77, 504–514 (2012).

  6. 6.

    Dauphas, N., Burkhardt, C., Warren, P. H. & Fang-Zhen, T. Geochemical arguments for an Earth-like Moon-forming impactor. Phil. Trans. Royal Soc. A 372, 20130244 (2014).

  7. 7.

    Barboni, M. et al. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 3, e1602365 (2017).

  8. 8.

    Jacobson, S. A. et al. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508, 84–87 (2014).

  9. 9.

    Yin, Q.-Z. et al. Records of the Moon‐forming impact and the 470 Ma disruption of the L chondrite parent body in the asteroid belt from U–Pb apatite ages of Novato (L6). Meteorit. Planet. Sci. 49, 1426–1439 (2014).

  10. 10.

    Bottke, W. et al. Dating the Moon-forming impact event with asteroidal meteorites. Science 348, 321–323 (2015).

  11. 11.

    Yin, Q. et al. A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418, 949–952 (2002).

  12. 12.

    Moynier, F. et al. Coupled 182W–142Nd constraint for early Earth differentiation. Proc. Natl Acad. Sci. USA 107, 10810–10814 (2010).

  13. 13.

    Carlson, R. W., Borg, L. E., Gaffney, A. M. & Boyet, M. Rb–Sr, Sm–Nd and Lu–Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation. Phil. Trans. Royal Soc. A 372, 20130246 (2014).

  14. 14.

    Connelly, J. & Bizzarro, M. Lead isotope evidence for a young formation age of the Earth–Moon system. Earth Planet. Sci. Lett. 452, 36–43 (2016).

  15. 15.

    Borg, L. E., Connelly, J. N., Boyet, M. & Carlson, R. W. Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477, 70–72 (2011).

  16. 16.

    Snape, J. F. et al. Lunar basalt chronology, mantle differentiation and implications for determining the age of the Moon. Earth Planet. Sci. Lett. 451, 149–158 (2016).

  17. 17.

    Borg, L. E., Gaffney, A. M. & Shearer, C. K. A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteorit. Planet. Sci. 50, 715–732 (2015).

  18. 18.

    Kruijer, T. S. & Kleine, T. Tungsten isotopes and the origin of the Moon. Earth Planet. Sci. Lett. 475, 15–24 (2017).

  19. 19.

    Kruijer, T. S., Kleine, T., Fischer-Gödde, M. & Sprung, P. Lunar tungsten isotopic evidence for the late veneer. Nature 520, 534–537 (2015).

  20. 20.

    Touboul, M., Puchtel, I. S. & Walker, R. J. Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. Nature 520, 530–533 (2015).

  21. 21.

    Vockenhuber, C. et al. New half-life measurement of 182Hf: improved chronometer for the early solar system. Phys. Rev. Lett. 93, 172501 (2004).

  22. 22.

    Münker, C. A high field strength element perspective on early lunar differentiation. Geochim. Cosmochim. Acta 74, 7340–7361 (2010).

  23. 23.

    König, S. et al. The Earth’s tungsten budget during mantle melting and crust formation. Geochim. Cosmochim. Acta 75, 2119–2136 (2011).

  24. 24.

    Rizo, H. et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Geochim. Cosmochim. Acta 175, 319–336 (2016).

  25. 25.

    Willbold, M., Elliott, T. & Moorbath, S. The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature 477, 195–198 (2011).

  26. 26.

    Puchtel, I. S., Blichert-Toft, J., Touboul, M., Horan, M. F. & Walker, R. J. The coupled 182W–142Nd record of early terrestrial mantle differentiation. Geochem. Geophys. Geosys. 17, 2168–2193 (2016).

  27. 27.

    Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).

  28. 28.

    Jones, T. D., Davies, D. R. & Sossi, P. A. Tungsten isotopes in mantle plumes: heads it’s positive, tails it’s negative. Earth Planet. Sci. Lett. 506, 255–267 (2019).

  29. 29.

    Puchtel, I. S., Blichert-Toft, J., Touboul, M. & Walker, R. J. 182W and HSE constraints from 2.7 Ga komatiites on the heterogeneous nature of the Archean mantle. Geochim. Cosmochim. Acta 228, 1–26 (2018).

  30. 30.

    Tusch, J. et al. Uniform 182W isotope compositions in Eoarchean rocks from the Isua region, SW Greenland: the role of early silicate differentiation and missing late veneer. Geochim. Cosmochim. Acta 257, 284–310 (2019).

  31. 31.

    Palme, H. & Rammensee, W. The significance of W in planetary differentiation processes: evidence from new data on eucrites. Proc. Lunar Planet. Sci. 12, 949–964 (1982).

  32. 32.

    Fonseca, R. O. C. et al. Redox controls on tungsten and uranium crystal/silicate melt partitioning and implications for the U/W and Th/W ratio of the lunar mantle. Earth Planet. Sci. Lett. 404, 1–13 (2014).

  33. 33.

    Leitzke, F. L. et al. The effect of titanium on the partitioning behavior of high-field strength elements between silicates, oxides and lunar basaltic melts with applications to the origin of mare basalts. Chem. Geol. 440, 219–238 (2016).

  34. 34.

    Leitzke, F. P. et al. Redox dependent behaviour of molybdenum during magmatic processes in the terrestrial and lunar mantle: implications for the Mo/W of the bulk silicate Moon. Earth Planet. Sci. Lett. 474, 503–515 (2017).

  35. 35.

    Sprung, P., Kleine, T. & Scherer, E. E. Isotopic evidence for chondritic Lu/Hf and Sm/Nd of the Moon. Earth Planet. Sci. Lett. 380, 77–87 (2013).

  36. 36.

    Snyder, G. A., Taylor, L. A. & Neal, C. R. A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim. Cosmochim. Acta 56, 3809–3823 (1992).

  37. 37.

    Dygert, N., Liang, Y. & Hess, P. The importance of melt TiO2 in affecting major and trace element partitioning between Fe–Ti oxides and lunar picritic glass melts. Geochim. Cosmochim. Acta 106, 134–151 (2013).

  38. 38.

    Day, J. M. & Walker, R. J. Highly siderophile element depletion in the Moon. Earth Planet. Sci. Lett. 423, 114–124 (2015).

  39. 39.

    Day, J. M., Pearson, D. G. & Taylor, L. A. Highly siderophile element constraints on accretion and differentiation of the Earth–Moon system. Science 315, 217–219 (2007).

  40. 40.

    Day, J., Puchtel, I., Walker, R., James, O. & Taylor, L. Osmium abundance and isotope systematics of lunar crustal rocks and mare basalts. Lunar Planet. Sci. Conf. 39, 1071 (2008).

  41. 41.

    Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005).

  42. 42.

    Wood, B., Walter, M. & Wade, J. Accretion of the Earth and segregation of its core. Nature 441, 825–833 (2006).

  43. 43.

    Walter, M., Newsom, H., Ertel, W., Holzheid, A. in Origin of the Earth and Moon (eds Canup, R. M. & Righter, K) 265–289 (Univ. Arizona Press, 2000).

  44. 44.

    Steenstra, E., Rai, N., Knibbe, J., Lin, Y. & van Westrenen, W. New geochemical models of core formation in the Moon from metal–silicate partitioning of 15 siderophile elements. Earth Planet. Sci. Lett. 441, 1–9 (2016).

  45. 45.

    Sossi, P. A., Moynier, F. & van Zuilen, K. Volatile loss following cooling and accretion of the Moon revealed by chromium isotopes. Proc. Natl Acad. Sci. USA 115, 10920–10925 (2018).

  46. 46.

    Weber, R. C., Lin, P.-Y., Garnero, E. J., Williams, Q. & Lognonne, P. Seismic detection of the lunar core. Science 331, 309–312 (2011).

  47. 47.

    Khan, A., Pommier, A., Neumann, G. & Mosegaard, K. The lunar moho and the internal structure of the Moon: a geophysical perspective. Tectonophysics 609, 331–352 (2013).

  48. 48.

    Garcia, R. F., Gagnepain-Beyneix, J., Chevrot, S. & Lognonné, P. Very preliminary reference Moon model. Phys. Earth Planet. Int. 188, 96–113 (2011).

  49. 49.

    Rai, N. & van Westrenen, W. Lunar core formation: new constraints from metal–silicate partitioning of siderophile elements. Earth Planet. Sci. Lett. 388, 343–352 (2014).

  50. 50.

    Newsom, H. et al. The depletion of tungsten in the bulk silicate earth: constraints on core formation. Geochim. Cosmochim. Acta 60, 1155–1169 (1996).

  51. 51.

    Garbe-Schönberg, C.-D. Simultaneous determination of thirty-seven trace elements in twenty-eight international rock standards by ICP-MS. Geostand. Geoanal. Res. 17, 81–97 (1993).

  52. 52.

    Münker, C., Weyer, S., Scherer, E. E. & Mezger, A. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem. Geophys. Geosyst. 2, 2001GC000183 (2001).

  53. 53.

    Kleine, T., Mezger, K., Palme, H. & Münker, C. The W isotope evolution of the bulk silicate Earth: constraints on the timing and mechanisms of core formation and accretion. Earth Planet. Sci. Lett. 228, 109–123 (2004).

  54. 54.

    Bast, R. et al. A rapid and efficient ion-exchange chromatography for Lu–Hf, Sm–Nd, and Rb–Sr geochronology and the routine isotope analysis of sub-ng amounts of Hf by MC-ICP-MS. J. Anal. Atom Spectrom. 30, 2323–2333 (2015).

  55. 55.

    Luo, X. M., Rehkämper, D.-C. & Lee, A. N. Halliday High precision 230Th/232Th and 234U/238U measurements using energy filtered ICP magnetic sector multiple collector mass spectrometry. Int. J. Mass Spectrom. Ion. Process. 171, 105–117 (1997).

  56. 56.

    Richter, S. et al. New average values for the n(238U)/n(235U) isotope ratios of natural uranium standards. Int. J. Mass Spectrom. 295, 94–97 (2010).

  57. 57.

    Smith, J. V. et al. Petrologic history of the moon inferred from petrography, mineralogy, and petrogenesis of Apollo 11 rocks. Geochim. Cosmochim. Acta 34 (Suppl.), 897–925 (1970).

  58. 58.

    Warren, P. H. The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci. Lett. 13, 201–240 (1985).

  59. 59.

    Wood, J. A., Dickey, J. S., Marvin, U. B. & Powell, B. N. Lunar anorthosites and a geophysical model of the moon. Geochim. Cosmochim. Acta 34 (Suppl.), 965–988 (1970).

  60. 60.

    Elardo, S. M., Draper, D. S. & Shearer, C. K. Lunar magma ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands mg-suite. Geochim. Cosmochim. Acta 75, 3024–3045 (2011).

  61. 61.

    Elkins-Tanton, L. T., van Orman, J. A., Hager, B. H. & Grove, T. L. Re-examination of the lunar magma ocean cumulate overturn hypothesis: melting or mixing is required. Earth Planet. Sci. Lett. 196, 239–249 (2002).

  62. 62.

    Meyer, C. Jr et al. Mineralogy, chemistry, and origin of the KREEP component in soil samples from the Ocean of Storms. In Proc. 2nd Lunar Sci. Conf. Vol 1 (ed. Levinson, A. A.) 393–411 (MIT, 1971).

  63. 63.

    Warren, P. H. & Wasson, J. T. The origins of KREEP. Rev. Geophys. 17, 73–88 (1979).

  64. 64.

    Hess, P. C. & Parmentier, E. M. A model for the thermal and chemical evolution of the Moons interior: implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134, 501–514 (1995).

  65. 65.

    Karner, J., Papike, J. J. & Shearer, C. K. Olivine from planetary basalts: chemical signatures that indicate planetary parentage and those that record igneous setting and process. Am. Mineral. 88, 806–816 (2000).

  66. 66.

    Nicholis, M. & Rutherford, M. J. Graphite oxidation in the Apollo 17 orange glass magma: implications for the generation of a lunar volcanic gas phase. Geochim. Cosmochim. Acta 73, 5905–5917 (2009).

  67. 67.

    Papike, J. J., Karner, J. M. & Shearer, C. K. Comparative planetary mineralogy: valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts. Am. Mineral. 90, 277–290 (2005).

  68. 68.

    Righter, K., Pando, K. M., Danielson, L. & Lee, C. T. Partitioning of Mo, P and other siderophile elements (Cu, Ga, Sn, Ni Co, Cr, Mn, V and W) between metal and silicate melt as a function of temperature and silicate melt composition. Earth Planet. Sci. Lett. 291, 1–9 (2010).

  69. 69.

    Kleine, T. et al. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009).

  70. 70.

    Kruijer, T., Kleine, T., Fischer-Gödde, M., Burkhardt, C. & Wieler, R. Nucleosynthetic W isotope anomalies and the Hf–W chronometry of Ca–Al-rich inclusions. Earth Planet. Sci. Lett. 403, 317–327 (2014).

Download references

Acknowledgements

M.M.T. and C.M. acknowledge funding through the European Commission by ERC grant 669666 ‘Infant Earth’. M.M.T. acknowledges funding from Deutsche Forschungsgemeinschaft (DFG) Projekt no. 213793859 (SP 1385/1-1 to P.S.) and EoS project ET-HOME (present funding); R.O.C.F. acknowledges funding for a Heisenberg Fellowship by the DFG through grant DFG FO 698/5-1 and FO 698/6-1; P.S. acknowledges funding from UoC emerging fields grant ‘ULDETIS’. F.P.L. acknowledges funding for a PhD scholarship by DAAD/CNPq (248562/2013-4). F. Wombacher and the Cologne/Bonn support staff are thanked for laboratory operations. C.D. Garbe-Schönberg (CAU zu Kiel) is thanked for the conventional trace element analyses. CAPTEM is thanked and acknowledged for sample allocations.

Author information

M.M.T. and C.M. did the sample digestions, column chemistry and HFSE–W–U–Th isotope dilution concentration measurements partially supported by P.S. on the Neptune MC-ICP-MS. P.S., R.O.C.F. and F.P.L. did the modelling based on experimental partitioning data. M.M.T. did the modelling that related Hf/W to 182W. All the authors contributed towards the writing of the manuscript and the discussion of the implications of the data.

Correspondence to Maxwell M. Thiemens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

Element concentration data

Supplementary Table 2

Melt partition coefficients

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading