Ice nucleation by aerosols from anthropogenic pollution

Article metrics

Abstract

The formation of ice particles in the atmosphere strongly affects cloud properties and the climate. While mineral dust is known to be an effective ice nucleating particle, the role of aerosols from anthropogenic pollution in ice nucleation is still under debate. Here we probe the ice nucleation ability of different aerosol types by combining 11-year observations from multiple satellites and cloud-resolving model simulations. We find that, for strong convective systems, the ice particle effective radius near cloud top decreases with increasing loading of polluted continental aerosols, because the ice formation is dominated by homogeneous freezing of cloud droplets, which are smaller under more polluted conditions. By contrast, an increase in ice particle effective radius with polluted continental aerosols is found for moderate convection. Our model simulations suggest that this positive correlation is explained by enhanced heterogeneous ice nucleation and prolonged ice particle growth at higher aerosol loading, indicating that polluted continental aerosols contain a considerable fraction of ice nucleating particles. Similar aerosol–ice relationships are observed for dust aerosols, further corroborating the ice nucleation ability of polluted continental aerosols. By catalysing ice formation, aerosols from anthropogenic pollution could have profound impacts on cloud lifetime and radiative effect as well as precipitation efficiency.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Relationships between column AOD and Rei of cold-top convective clouds and anvil cirrus with different ranges of CTH or CAPE.
Fig. 2: Pearson’s total and partial correlations between AOD and Rei.
Fig. 3: Simulated changes in Rei and fraction of heterogeneously formed ice particle number concentration for aerosols with diameter larger than 0.1 μm.
Fig. 4: Schematic of microphysical changes in cold-top convective clouds due to an increase in loading of anthropogenic pollution aerosols.

Data availability

The satellite and meteorology data products used in this study are publicly available at the following sites:

MODIS/Aqua MYD04 and MYD06 products: https://earthdata.nasa.gov/

CALIOP/CALIPSO 05kmMLay and 05kmAPro products: https://eosweb.larc.nasa.gov/

AIRS/Aqua AIRIBRAD product: https://disc.gsfc.nasa.gov/

NCEP Final Analysis product: https://rda.ucar.edu/datasets/ds083.2/

Other data supporting the findings of this study are available within the Article and Supplementary Information.

Code availability

The code of the WRF-SBM model is available at http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. The scripts used to process the satellite data can be requested from the corresponding authors.

References

  1. 1.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  2. 2.

    Seinfeld, J. H. et al. Improving our fundamental understanding of the role of aerosol–cloud interactions in the climate system. Proc. Natl Acad. Sci. USA 113, 5781–5790 (2016).

  3. 3.

    Mülmenstädt, J., Sourdeval, O., Delanoë, J. & Quaas, J. Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett. 42, 6502–6509 (2015).

  4. 4.

    Wang, Y. et al. Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China. Atmos. Chem. Phys. 11, 12421–12436 (2011).

  5. 5.

    Koop, T., Luo, B. P., Tsias, A. & Peter, T. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406, 611–614 (2000).

  6. 6.

    DeMott, P. J. et al. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl Acad. Sci. USA 107, 11217–11222 (2010).

  7. 7.

    Knopf, D. A., Alpert, P. A. & Wang, B. B. The role of organic aerosol in atmospheric ice nucleation: a review. ACS Earth Space Chem. 2, 168–202 (2018).

  8. 8.

    Kiselev, A. et al. Active sites in heterogeneous ice nucleation—the example of K-rich feldspars. Science 355, 367–371 (2017).

  9. 9.

    Bi, Y. F., Cao, B. X. & Li, T. S. Enhanced heterogeneous ice nucleation by special surface geometry. Nat. Commun. 8, 15372 (2017).

  10. 10.

    Holden, M. A. et al. High-speed imaging of ice nucleation in water proves the existence of active sites. Sci. Adv. 5, eaav4316 (2019).

  11. 11.

    Hoose, C. & Moehler, O. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. Phys. 12, 9817–9854 (2012).

  12. 12.

    Kanji, Z. A. et al. in Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges (eds Baumgardner, D., McFarquhar, G. M. & Heymsfield, A. J.) Vol. 58, 1.1–1.33 (American Meteorological Society, 2017).

  13. 13.

    Cziczo, D. J. et al. in Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges (eds Baumgardner, D., McFarquhar, G. M. & Heymsfield, A. J.) Vol. 58, 8.1–8.13 (American Meteorological Society, 2017).

  14. 14.

    Cziczo, D. J. et al. Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science 340, 1320–1324 (2013).

  15. 15.

    Murray, B. J., O’Sullivan, D., Atkinson, J. D. & Webb, M. E. Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev. 41, 6519–6554 (2012).

  16. 16.

    Bond, T. C. et al. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118, 5380–5552 (2013).

  17. 17.

    Mahrt, F. et al. Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber. Atmos. Chem. Phys. 18, 13363–13392 (2018).

  18. 18.

    Knopf, D. A., Wang, B., Laskin, A., Moffet, R. C. & Gilles, M. K. Heterogeneous nucleation of ice on anthropogenic organic particles collected in Mexico City. Geophys. Res. Lett. 37, L11803 (2010).

  19. 19.

    Wang, B. et al. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K. J. Geophys. Res. Atmos. 117, D00v19 (2012).

  20. 20.

    China, S. et al. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean. J. Geophys. Res. Atmos. 122, 3065–3079 (2017).

  21. 21.

    Cziczo, D. J. et al. Inadvertent climate modification due to anthropogenic lead. Nat. Geosci. 2, 333–336 (2009).

  22. 22.

    Lacher, L. et al. Impact of air mass conditions and aerosol properties on ice nucleating particle concentrations at the High Altitude Research Station Jungfraujoch. Atmosphere 9, 363 (2018).

  23. 23.

    Zhao, B. et al. Impact of aerosols on ice crystal size. Atmos. Chem. Phys. 18, 1065–1078 (2018).

  24. 24.

    Wang, J. D. et al. Particulate matter pollution over China and the effects of control policies. Sci. Total. Environ. 584, 426–447 (2017).

  25. 25.

    Zhao, B. et al. Intra-annual variations of regional aerosol optical depth, vertical distribution, and particle types from multiple satellite and ground-based observational datasets. Atmos. Chem. Phys. 18, 11247–11260 (2018).

  26. 26.

    Krämer, M. et al. A microphysics guide to cirrus clouds—Part 1: Cirrus types. Atmos. Chem. Phys. 16, 3463–3483 (2016).

  27. 27.

    Stein, T. H. M., Delanoe, J. & Hogan, R. J. A comparison among four different retrieval methods for ice-cloud properties using data from CloudSat, CALIPSO, and MODIS. J. Appl. Meteorol. Climatol. 50, 1952–1969 (2011).

  28. 28.

    Sherwood, S. C., Minnis, P. & McGill, M. Deep convective cloud-top heights and their thermodynamic control during CRYSTAL-FACE. J. Geophys. Res. Atmos. 109, D20119 (2004).

  29. 29.

    Twomey, S. Influence of pollution on shortwave albedo of clouds. J. Atmos. Sci. 34, 1149–1152 (1977).

  30. 30.

    Gartzke, J., Knuteson, R., Przybyl, G., Ackerman, S. & Revercomb, H. Comparison of satellite-, model-, and radiosonde-derived convective available potential energy in the Southern Great Plains region. J. Appl. Meteorol. Climatol. 56, 1499–1513 (2017).

  31. 31.

    Omar, A. H. et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean. Technol. 26, 1994–2014 (2009).

  32. 32.

    DeSouza-Machado, S. G. et al. Infrared retrievals of dust using AIRS: comparisons of optical depths and heights derived for a North African dust storm to other collocated EOS A-Train and surface observations. J. Geophys. Res. Atmos. 115, D15201 (2010).

  33. 33.

    Hardle, W. K. & Simar, L. Applied Multivariate Statistical Analysis 4th edn, 773 (Springer, 2015).

  34. 34.

    Zhao, B. et al. Type-dependent responses of ice cloud properties to aerosols from satellite retrievals. Geophys. Res. Lett. 45, 3297–3306 (2018).

  35. 35.

    Fan, J. et al. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust. Atmos. Chem. Phys. 14, 81–101 (2014).

  36. 36.

    Fan, J. W., Leung, L. R., Rosenfeld, D. & DeMott, P. J. Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds. Atmos. Chem. Phys. 17, 1017–1035 (2017).

  37. 37.

    Wang, Y., Fan, J. W., Zhang, R. Y., Leung, L. R. & Franklin, C. Improving bulk microphysics parameterizations in simulations of aerosol effects. J. Geophys. Res. Atmos. 118, 5361–5379 (2013).

  38. 38.

    Schmale, J. et al. Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmos. Chem. Phys. 18, 2853–2881 (2018).

  39. 39.

    Yang, J. F., Lei, H. C. & Lu, Y. H. Airborne observations of cloud condensation nuclei spectra and aerosols over East Inner Mongolia. Adv. Atmos. Sci. 34, 1003–1016 (2017).

  40. 40.

    Cai, M. et al. The size resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol hygroscopicity and composition in the Pearl Delta River (PRD) Region during wintertime 2014. Atmos. Chem. Phys. 18, 16419–16437 (2018).

  41. 41.

    Kärcher, B. & Lohmann, U. A parameterization of cirrus cloud formation: heterogeneous freezing. J. Geophys. Res. Atmos. 108, 4402 (2003).

  42. 42.

    Spichtinger, P. & Cziczo, D. J. Impact of heterogeneous ice nuclei on homogeneous freezing events in cirrus clouds. J. Geophys. Res. Atmos. 115, D14208 (2010).

  43. 43.

    Shao, Y., Ishizuka, M., Mikami, M. & Leys, J. F. Parameterization of size-resolved dust emission and validation with measurements. J. Geophys. Res. Atmos. 116, D08203 (2011).

  44. 44.

    Despres, V. R. et al. Primary biological aerosol particles in the atmosphere: a review. Tellus B 64, 15598 (2012).

  45. 45.

    Lohmann, U. A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett. 29, 1052 (2002).

  46. 46.

    Phillips, V. T. J. et al. Improvements to an empirical parameterization of heterogeneous ice nucleation and its comparison with observations. J. Atmos. Sci. 70, 378–409 (2013).

  47. 47.

    Penner, J. E., Zhou, C., Garnier, A. & Mitchell, D. L. Anthropogenic aerosol indirect effects in cirrus clouds. J. Geophys. Res. Atmos. 123, 11652–11677 (2018).

  48. 48.

    Charnawskas, J. C. et al. Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation. Faraday Discuss. 200, 165–194 (2017).

  49. 49.

    Rosenfeld, D. et al. Flood or drought: how do aerosols affect precipitation? Science 321, 1309–1313 (2008).

  50. 50.

    Fan, J. W. et al. Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science 359, 411–418 (2018).

  51. 51.

    Liu, Z., Omar, A. H., Hu, Y., Vaughan, M. A. & Winker, D. M. CALIOP Algorithm Theoretical Basis Document Part 3: Scene Classification Algorithms (National Aeronautics and Space Administration, 2005); https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202_Part3_v1.0.pdf

  52. 52.

    Stein, T. H. M., Holloway, C. E., Tobin, I. & Bony, S. Observed relationships between cloud vertical structure and convective aggregation over tropical ocean. J. Climate 30, 2187–2207 (2017).

  53. 53.

    Chin, M. et al. Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements. Ann. Geophys. 27, 3439–3464 (2009).

  54. 54.

    Han, Y. et al. Impacts of elevated-aerosol-layer and aerosol type on the correlation of AOD and particulate matter with ground-based and satellite measurements in Nanjing, southeast China. Sci. Total Environ. 532, 195–207 (2015).

  55. 55.

    Kumar, N., Chu, A. & Foster, A. An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan. Atmos. Environ. 41, 4492–4503 (2007).

  56. 56.

    Ginoux, P. et al. Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate. J. Geophys. Res. Atmos. 111, D22210 (2006).

  57. 57.

    Niu, F. & Li, Z. Q. Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmos. Chem. Phys. 12, 8491–8498 (2012).

  58. 58.

    Koren, I., Feingold, G. & Remer, L. A. The invigoration of deep convective clouds over the Atlantic: aerosol effect, meteorology or retrieval artifact? Atmos. Chem. Phys. 10, 8855–8872 (2010).

  59. 59.

    Koren, I., Remer, L. A., Altaratz, O., Martins, J. V. & Davidi, A. Aerosol-induced changes of convective cloud anvils produce strong climate warming. Atmos. Chem. Phys. 10, 5001–5010 (2010).

  60. 60.

    Peng, J., Li, Z. Q., Zhang, H., Liu, J. J. & Cribb, M. Systematic changes in cloud radiative forcing with aerosol loading for deep clouds in the tropics. J. Atmos. Sci. 73, 231–249 (2016).

  61. 61.

    Jiang, J. H. et al. Influence of convection and aerosol pollution on ice cloud particle effective radius. Atmos. Chem. Phys. 11, 457–463 (2011).

  62. 62.

    Jiang, J. H. et al. Contrasting effects on deep convective clouds by different types of aerosols. Nat. Commun. 9, 3874 (2018).

  63. 63.

    Kim, M. H. et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 11, 6107–6135 (2018).

  64. 64.

    Won, Y.-I. README Document for AIRS Level-1B Version 5 IR Calibrated Radiance Products: AIRIBRAD, AIRIBRAD_NRT, AIRIBQAP, AIRIBQAP_NRT https://docserver.gesdisc.eosdis.nasa.gov/repository/Mission/AIRS/3.3_ScienceDataProductDocumentation/3.3.4_ProductGenerationAlgorithms/README.AIRIBRAD.pdf (2008).

  65. 65.

    Seeley, J. T. & Romps, D. M. Why does tropical convective available potential energy (CAPE) increase with warming? Geophys. Res. Lett. 42, 10429–10437 (2015).

  66. 66.

    Riemann-Campe, K., Fraedrich, K. & Lunkeit, F. Global climatology of Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN) in ERA-40 reanalysis. Atmos. Res. 93, 534–545 (2009).

  67. 67.

    Khain, A., Pokrovsky, A., Pinsky, M., Seifert, A. & Phillips, V. Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci. 61, 2963–2982 (2004).

  68. 68.

    Khain, A. P. Notes on state-of-the-art investigations of aerosol effects on precipitation: a critical review. Environ. Res. Lett. 4, 015004 (2009).

  69. 69.

    Bigg, E. K. The formation of atmospheric ice crystals by the freezing of droplets. Q. J. R. Meteorol. Soc. 79, 510–519 (1953).

  70. 70.

    Liu, X. H. & Penner, J. E. Ice nucleation parameterization for global models. Meteorol. Z. 14, 499–514 (2005).

  71. 71.

    DeMott, P. J. et al. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmos. Chem. Phys. 15, 393–409 (2015).

Download references

Acknowledgements

This study is supported by the NASA ROSES TASNPP (80NSSC18K0985) and NSF AGS-1701526, AGS-1700727 and AGS-1642289 grants. We acknowledge the support of the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA, and the Joint Institute for Regional Earth System Science and Engineering at the University of California Los Angeles. The effort of J.F. was supported by the US Department of Energy (DOE) Early Career Research Program. X.L. was supported by the US DOE Atmospheric System Research Program (grants DE-SC0014239 and DE-SC0018926). We would like to acknowledge high-performance computing support from Cheyenne (https://doi.org/10.5065/D6RX99HX) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation.

Author information

B.Z., Y.G. and Y.W. designed the research; B.Z., Y.G., Y.W. and L.H. performed the satellite data analysis; Y.W., B.Z. and J.F. performed the model simulation; B.Z., Y.W., Y.G., K.-N.L., J.F., J.H.J. and X.L. analysed the results; B.Z., Y.W., Y.G., K.-N.L., J.H.J., J.F., X.L. and Y.L.Y. wrote the paper.

Correspondence to Bin Zhao or Yuan Wang or Yu Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, figures and tables.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Wang, Y., Gu, Y. et al. Ice nucleation by aerosols from anthropogenic pollution. Nat. Geosci. 12, 602–607 (2019) doi:10.1038/s41561-019-0389-4

Download citation