Abstract
The rise of ammonia emissions in Asia is predicted to increase radiative cooling and air pollution by forming ammonium nitrate particles in the lower troposphere. There is, however, a severe lack of knowledge about ammonia and ammoniated aerosol particles in the upper troposphere and their possible effects on the formation of clouds. Here we employ satellite observations and high-altitude aircraft measurements, combined with atmospheric trajectory simulations and cloud-chamber experiments, to demonstrate the presence of ammonium nitrate particles and also track the source of the ammonia that forms into the particles. We found that during the Asian monsoon period, solid ammonium nitrate particles are surprisingly ubiquitous in the upper troposphere from the Eastern Mediterranean to the Western Pacific—even as early as in 1997. We show that this ammonium nitrate aerosol layer is fed by convection that transports large amounts of ammonia from surface sources into the upper troposphere. Impurities of ammonium sulfate allow the crystallization of ammonium nitrate even in the conditions, such as a high relative humidity, that prevail in the upper troposphere. Solid ammonium nitrate particles in the upper troposphere play a hitherto neglected role in ice cloud formation and aerosol indirect radiative forcing.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation
Nature Open Access 18 May 2022
-
Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere
Communications Earth & Environment Open Access 14 May 2021
-
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
Nature Open Access 13 May 2020
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
The data sets generated and analysed during the current study are available from the corresponding author upon request. Additionally, the CRISTA data set of AN is publicly available at https://datapub.fz-juelich.de/slcs/crista/an/. MIPAS and GLORIA data for NH3 and AN as well as trajectory information and AIDA spectra can be downloaded from the KITopen archive at https://doi.org/10.5445/IR/1000095498. IASI data on NH3 are available at http://iasi.aeris-data.fr/NH3/.
References
Dentener, F. J. & Crutzen, P. J. A three-dimensional model of the global ammonia cycle. J. Atmos. Chem. 19, 331–369 (1994).
Behera, S. N., Sharma, M., Aneja, V. P. & Balasubramanian, R. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 20, 8092–8131 (2013).
Bouwman, A. et al. A global high-resolution emission inventory for ammonia. Glob. Biogeochem. Cycles 11, 561–587 (1997).
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).
Warner, J. X. et al. Increased atmospheric ammonia over the world’s major agricultural areas detected from space. Geophys. Res. Lett. 44, 2875–2884 (2017).
Xu, R. T. et al. Half-century ammonia emissions from agricultural systems in southern Asia: magnitude, spatiotemporal patterns, and implications for human health. Geohealth 2, 40–53 (2018).
Hauglustaine, D. A., Balkanski, Y. & Schulz, M. A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate. Atmos. Chem. Phys. 14, 11031–11063 (2014).
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Kirkby, J. et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476, 429–433 (2011).
Kürten, A. et al. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. J. Geophys. Res. 121, 12377–12400 (2016).
Abbatt, J. P. D. et al. Solid ammonium sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation. Science 313, 1770–1773 (2006).
Cziczo, D. J. & Abbatt, J. P. D. Infrared observations of the response of NaCl, MgCl2, NH4HSO4, and NH4NO3 aerosols to changes in relative humidity from 298 to 238 K. J. Phys. Chem. A 104, 2038–2047 (2000).
Cziczo, D. J. & Abbatt, J. P. D. Ice nucleation in NH4HSO4, NH4NO3, and H2SO4 aqueous particles: implications for cirrus cloud formation. Geophys. Res. Lett. 28, 963–966 (2001).
Höpfner, M. et al. First detection of ammonia (NH3) in the Asian summer monsoon upper troposphere. Atmos. Chem. Phys. 16, 14357–14369 (2016).
Ploeger, F. et al. A potential vorticity-based determination of the transport barrier in the Asian summer monsoon anticyclone. Atmos. Chem. Phys. 15, 13145–13159 (2015).
Park, M., Randel, W. J., Gettelman, A., Massie, S. T. & Jiang, J. H. Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J. Geophys. Res. 112, D16309 (2007).
Park, M. et al. Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data. Atmos. Chem. Phys. 8, 757–764 (2008).
Randel, W. J. et al. Asian monsoon transport of pollution to the stratosphere. Science 328, 611–613 (2010).
Ungermann, J. et al. Observations of PAN and its confinement in the Asian summer monsoon anticyclone in high spatial resolution. Atmos. Chem. Phys. 16, 8389–8403 (2016).
Santee, M. L. et al. A comprehensive overview of the climatological composition of the Asian summer monsoon anticyclone based on 10 years of Aura microwave limb sounder measurements. J. Geophys. Res. 122, 5491–5514 (2017).
Lelieveld, J. et al. The South Asian monsoon: pollution pump and purifier. Science 361, 270–273 (2018).
Ploeger, F., Konopka, P., Walker, K. & Riese, M. Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere. Atmos. Chem. Phys. 17, 7055–7066 (2017).
Yu, P. et al. Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone. Proc. Natl Acad. Sci. USA 114, 6972–6977 (2017).
Vernier, J.-P., Tomason, L. W. & Kar, J. CALIPSO detection of an Asian tropopause aerosol layer. Geophys. Res. Lett. 38, L07804 (2011).
Thomason, L. W. & Vernier, J.-P. Improved SAGE II cloud/aerosol categorization and observations of the Asian tropopause aerosol layer: 1989–2005. Atmos. Chem. Phys. 13, 4605–4616 (2013).
Vernier, J. P. et al. Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution. J. Geophys. Res. 120, 1608–1619 (2015).
Vernier, J.-P. et al. BATAL: the balloon measurement campaigns of the Asian tropopause aerosol layer. Bull. Am. Meteorol. Soc. 99, 955–973 (2018).
Fadnavis, S. et al. Transport of aerosols into the UTLS and their impact on the Asian monsoon region as seen in a global model simulation. Atmos. Chem. Phys. 13, 8771–8786 (2013).
Neely, R. R. et al. The contribution of anthropogenic SO2 emissions to the Asian tropopause aerosol layer. J. Geophys. Res. 119, 1571–1579 (2014).
Yu, P., Toon, O. B., Neely, R. R., Martinsson, B. G. & Brenninkmeijer, C. A. M. Composition and physical properties of the Asian tropopause aerosol layer and the North American tropospheric aerosol layer. Geophys. Res. Lett. 42, 2540–2546 (2015).
Lau, W. K. M., Yuan, C. & Li, Z. Origin, maintenance and variability of the Asian Tropopause Aerosol Layer (ATAL): the roles of monsoon dynamics. Sci. Rep. 8, 3960 (2018).
Gu, Y., Liao, H. & Bian, J. Summertime nitrate aerosol in the upper troposphere and lower stratosphere over the Tibetan Plateau and the South Asian summer monsoon region. Atmos. Chem. Phys. 16, 6641–6663 (2016).
Schlenker, J. C. & Martin, S. T. Crystallization pathways of sulfate–nitrate–ammonium aerosol particles. J. Phys. Chem. A 109, 9980–9985 (2005).
Vogel, B. et al. Lagrangian simulations of the transport of young air masses to the top of the Asian monsoon anticyclone and into the tropical pipe. Atmos. Chem. Phys. 19, 6007–6034 (2019).
Friedl-Vallon, F. et al. Instrument concept of the imaging Fourier transform spectrometer GLORIA. Atmos. Meas. Tech. 7, 3565–3577 (2014).
Riese, M. et al. Gimballed limb observer for radiance imaging of the atmosphere (GLORIA) scientific objectives. Atmos. Meas. Tech. 7, 1915–1928 (2014).
Cai, Y., Montague, D. C., Mooiweer-Bryan, W. & Deshler, T. Performance characteristics of the ultra high sensitivity aerosol spectrometer for particles between 55 and 800 nm: laboratory and field studies. J. Aerosol Sci. 39, 759–769 (2008).
Weigel, R. et al. In situ observations of new particle formation in the tropical upper troposphere: the role of clouds and the nucleation mechanism. Atmos. Chem. Phys. 11, 9983–10010 (2011).
Drewnick, F. et al. A new time-of-flight aerosol mass spectrometer (TOF-AMS)—instrument description and first field deployment. Aerosol Sci. Technol. 39, 637–658 (2005).
Allan, J. D. et al. A generalised method for the extraction of chemically resolved mass spectra from aerodyne aerosol mass spectrometer data. J. Aerosol Sci. 35, 909–922 (2004).
Schulz, C. et al. Aircraft-based observations of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) in the tropical upper troposphere over the Amazon region. Atmos. Chem. Phys. 18, 14979–15001 (2018).
Van Damme, M. et al. Version 2 of the IASI NH3 neural network retrieval algorithm: near-real-time and reanalysed datasets. Atmos. Meas. Tech. 10, 4905–4914 (2017).
Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D. & Coheur, P.-F. Global ammonia distribution derived from infrared satellite observations. Nat. Geosci. 2, 479–483 (2009).
van Damme, M. et al. Industrial and agricultural ammonia point sources exposed. Nature 564, 99–103 (2018).
Metzger, S., Dentener, F., Krol, M., Jeuken, A. & Lelieveld, J. Gas/aerosol partitioning 2. Global modeling results. J. Geophys. Res. 107, 4313 (2002).
Hoog, I., Mitra, S. K., Diehl, K. & Borrmann, S. Laboratory studies about the interaction of ammonia with ice crystals at temperatures between 0 and −20 °C. J. Atmos. Chem. 57, 73–84 (2007).
Jost, A., Szakáll, M., Diehl, K., Mitra, S. K. & Borrmann, S. Chemistry of riming: the retention of organic and inorganic atmospheric trace constituents. Atmos. Chem. Phys. 17, 9717–9732 (2017).
Ge, C., Zhu, C., Francisco, J. S., Zeng, X. C. & Wang, J. A molecular perspective for global modeling of upper atmospheric NH3 from freezing clouds. Proc. Natl Acad. Sci. USA 115, 6147–6152 (2018).
Möhler, O. et al. Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA. Atmos. Chem. Phys. 3, 211–223 (2003).
Fahey, D. W. et al. The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques. Atmos. Meas. Tech. 7, 3177–3213 (2014).
Wagner, R., Benz, S., Möhler, O., Saathoff, H. & Schurath, U. Probing ice clouds by broadband mid-infrared extinction spectroscopy: case studies from ice nucleation experiments in the AIDA aerosol and cloud chamber. Atmos. Chem. Phys. 6, 4775–4800 (2006).
Schnaiter, M. et al. Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals—cloud chamber measurements in the context of contrail and cirrus microphysics. Atmos. Chem. Phys. 12, 10465–10484 (2012).
Wagner, R. et al. A review of optical measurements at the aerosol and cloud chamber AIDA. J. Quant. Spectrosc. Radiat. Transf. 110, 930–949 (2009).
Offermann, D. et al. Cryogenic infrared spectrometers and telescopes for the atmosphere (CRISTA) experiment and middle atmosphere variability. J. Geophys. Res. 104, 16311–16325 (1999).
Riese, M. et al. Cryogenic infrared spectrometers and telescopes for the atmosphere (CRISTA) data processing and atmospheric temperature and trace gas retrieval. J. Geophys. Res. 104, 16349–16367 (1999).
Grossmann, K. U. et al. The CRISTA-2 mission. J. Geophys. Res. 107, 8173 (2002).
Fischer, H. et al. MIPAS: an instrument for atmospheric and climate research. Atmos. Chem. Phys. 8, 2151–2188 (2008).
Kleinert, A. et al. Level 0 to 1 processing of the imaging Fourier transform spectrometer GLORIA: generation of radiometrically and spectrally calibrated spectra. Atmos. Meas. Tech. 7, 4167–4184 (2014).
Toon, O. B., Tolbert, M. A., Middlebrook, A. M. & Jordan, J. Infrared optical constants of H2O, ice, amorphous nitric acid solutions, and nitric acid hydrates. J. Geophys. Res. 99, 25631–25654 (1994).
Koch, T. G., Holmes, N. S., Roddis, T. B. & Sodeau, J. R. Low-temperature reflection/absorption IR study of thin films of nitric acid hydrates and ammonium nitrate adsorbed on gold foil. J. Chem. Soc. Faraday Trans. 92, 4787 (1996).
Biermann, U. M. Gefrier- und FTIR-Experimente zur Nukleation und Lebensdauer stratosphärischer Wolken. PhD thesis, Universität Bielefeld (1998).
Spang, R. & Remedios, J. J. Observations of a distinctive infra-red spectral feature in the atmospheric spectra of polar stratospheric clouds measured by the CRISTA instrument. Geophys. Res. Lett. 30, 1875 (2003).
Höpfner, M. et al. Spectroscopic evidence for NAT, STS, and ice in MIPAS infrared limb emission measurements of polar stratospheric clouds. Atmos. Chem. Phys. 6, 1201–1219 (2006).
Woiwode, W. et al. Spectroscopic evidence of large aspherical β-NAT particles involved in denitrification in the December 2011 Arctic stratosphere. Atmos. Chem. Phys. 16, 9505–9532 (2016).
Théorêt, A. & Sandorfy, C. Infrared spectra and crystalline phase transitions of ammonium nitrate. Can. J. Chem. 42, 57–62 (1964).
Fernandes, J. R., Ganguly, S. & Rao, C. Infrared spectroscopic study of the phase transitions in CsNO3, RbNO3 and NH4NO3. Spectrochim. Acta A 35, 1013–1020 (1979).
Allen, D. T., Palen, E. J., Haimov, M. I., Hering, S. V. & Young, J. R. Fourier transform infrared spectroscopy of aerosol collected in a low pressure impactor (LPI/FTIR): method development and field calibration. Aerosol Sci. Technol. 21, 325–342 (1994).
Hopey, J. A., Fuller, K. A., Krishnaswamy, V., Bowdle, D. & Newchurch, M. J. Fourier transform infrared spectroscopy of size-segregated aerosol deposits on foil substrates. Appl. Opt. 47, 2266–2274 (2008).
Earle, M. E., Pancescu, R. G., Cosic, B., Zasetsky, A. Y. & Sloan, J. J. Temperature-dependent complex indices of refraction for crystalline (NH4)2SO4. J. Phys. Chem. A 110, 13022–13028 (2006).
Rosenoern, T., Schlenker, J. C. & Martin, S. T. Hygroscopic growth of multicomponent aerosol particles influenced by several cycles of relative humidity. J. Phys. Chem. A 112, 2378–2385 (2008).
Laskina, O., Young, M. A., Kleiber, P. D. & Grassian, V. H. Infrared extinction spectra of mineral dust aerosol: Single components and complex mixtures. J. Geophys. Res. 117, D18210 (2012).
Braban, C. F., Carroll, M. F., Styler, S. A. & Abbatt, J. P. D. Phase transitions of malonic and oxalic acid aerosols. J. Phys. Chem. A 107, 6594–6602 (2003).
Miñambres, L., Sánchez, M. N., Castaño, F. & Basterretxea, F. J. Hygroscopic properties of internally mixed particles of ammonium sulfate and succinic acid studied by infrared spectroscopy. J. Phys. Chem. A 114, 6124–6130 (2010).
Chasan, D. E. & Norwitz, G. Infrared determination of inorganic nitrates by the pellet technique; infrared determination of two inorganic nitrates in the presence of each other. Appl. Spectrosc. 24, 283–287 (1970).
Harris, M. J., Salje, E. K. H. & Guttler, B. K. An infrared spectroscopic study of the internal modes of sodium nitrate: implications for the structural phase transition. J. Phys. Condens. Matter 2, 5517–5527 (1990).
Ungermann, J. et al. CRISTA-NF measurements with unprecedented vertical resolution during the RECONCILE aircraft campaign. Atmos. Meas. Tech. 5, 1173–1191 (2012).
Sutton, M. A., Erisman, J. W., Dentener, F. & Möller, D. Ammonia in the environment: from ancient times to the present. Environ. Pollut. 156, 583–604 (2008).
von Bobrutzki, K. et al. Field inter-comparison of eleven atmospheric ammonia measurement techniques. Atmos. Meas. Tech. 3, 91–112 (2010).
von Clarmann, T. et al. Retrieval of temperature, H2O, O3, HNO3, CH4, N2O, ClONO2 and ClO from MIPAS reduced resolution nominal mode limb emission measurements. Atmos. Meas. Tech. 2, 159–175 (2009).
Tikhonov, A. On the solution of incorrectly stated problems and method of regularization. Dokl. Akad. Nauk. SSSR 151, 501–504 (1963).
Woiwode, W. et al. Validation of first chemistry mode retrieval results from the new limb-imaging FTS GLORIA with correlative MIPAS-STR observations. Atmos. Meas. Tech. 8, 2509–2520 (2015).
Johansson, S. et al. Airborne limb-imaging measurements of temperature, HNO3, O3, ClONO2, H2O and CFC-12 during the Arctic winter 2015/16: characterization, in situ validation and comparison to Aura/MLS. Atmos. Meas. Tech. 11, 4737–4756 (2018).
Brands, M. et al. Characterization of a newly developed aircraft-based laser ablation aerosol mass spectrometer (ALABAMA) and first field deployment in urban pollution plumes over Paris during MEGAPOLI 2009. Aerosol Sci. Technol. 45, 46–64 (2011).
Murphy, D. M. & Thomson, D. S. Laser ionization mass spectroscopy of single aerosol particles. Aerosol Sci. Technol. 22, 237–249 (1995).
Cairo, F. et al. A comparison of light backscattering and particle size distribution measurements in tropical cirrus clouds. Atmos. Meas. Tech. 4, 557–570 (2011).
Pisso, I. & Legras, B. Turbulent vertical diffusivity in the sub-tropical stratosphere. Atmos. Chem. Phys. 8, 697–707 (2008).
Tissier, A.-S. & Legras, B. Convective sources of trajectories traversing the tropical tropopause layer. Atmos. Chem. Phys. 16, 3383–3398 (2016).
Wohltmann, I. & Rex, M. The Lagrangian chemistry and transport model ATLAS: validation of advective transport and mixing. Geosci. Mod. Dev. 2, 153–173 (2009).
Acknowledgements
We acknowledge the Geophysica pilots and crew as well as the local support in Kathmandu. We are grateful to the instrument development and operation teams of GLORIA at KIT and Jülich, and of ERICA at MPI-C and IPA-JGU and to the technical team of AIDA at KIT. The work at KIT and Jülich was supported by the Helmholtz ATMO program. We thank the teams at ULB/LATMOS (Université Libre de Bruxelles/Laboratoire Atmosphères, Milieux, Observations Spatiales) for provision of the IASI NH3 data. The European Space Agency is acknowledged for MIPAS data provision. Meteorological analysis data were provided by the European Centre for Medium-Range Weather Forecasts. ERA5 trajectory computations were generated using Copernicus Climate Change Service Information. D. Offermann and his team are acknowledged for conducting the CRISTA observations in the AMA region. We thank M. L. Santee for helpful discussions on satellite data sets. Funding for the ERICA instrument development was provided by the European Research Council Advanced Grant to S. Borrmann (EXCATRO project, grant no. 321040). Part of this work was supported by the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 603557, CEFIPRA5607-1, ANR-17-CE01-0015 and by the German “Bundesministerium für Bildung und Forschung” (BMBF) under the joint ROMIC-project SPITFIRE (01LG1205A). We also thank the Aeris data infrastructure for providing access to the MSG1 and Himawari data.
Author information
Authors and Affiliations
Contributions
M.H. conducted the analysis of MIPAS and GLORIA data, produced Figs. 2–4 and wrote the paper with all the authors contributing. J.U. conducted the analysis of the CRISTA data, helped with analysis of the GLORIA data and produced Fig. 1. A.D., S.M., A.M.B., O.A., A.H. and S. Borrmann performed and analysed the aircraft in situ measurements of ERICA. C.M. and R. Weigel prepared the analyses for Fig. 4a and O.A. for Fig. 4b. C.M. and R. Weigel conducted the measurements and data analyses for UHSAS and COPAS, respectively. R. Wagner, H.S., O.M. and T.L. conceived and performed the AIDA experiments and contributed to their interpretation. R.S. discovered the AN emission feature in the CRISTA data. M. Riese conceived the reanalysis of the CRISTA data with respect to signals of the ATAL. G.S. contributed to the analysis of the MIPAS data. B.L. and S. Bucci conducted the TRACZILLA trajectory calculations. F.C. performed the MAS aircraft observations and conducted their analysis. F.F.-V. conducted the GLORIA aircraft observations. S.J. analysed the trajectory data sets in combination with the IASI measurements. S.J. and L.K. helped with the analysis of the GLORIA data. P.P. contributed to the CRISTA and GLORIA data analysis. T.N. helped to perform the GLORIA observations. R.M. contributed to the interpretation of the observations. J.O. contributed to the interpretation of spectroscopic issues with AN and NH3. F.S. and M. Rex. defined the flight region, the general approach, general flight patterns and instrumentation of the aircraft campaign and organized it. I.W. developed the ATLAS model and provided the trajectory calculations from it, with contributions from M. Rex.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary description and Supplementary Figs. 1–11.
Rights and permissions
About this article
Cite this article
Höpfner, M., Ungermann, J., Borrmann, S. et al. Ammonium nitrate particles formed in upper troposphere from ground ammonia sources during Asian monsoons. Nat. Geosci. 12, 608–612 (2019). https://doi.org/10.1038/s41561-019-0385-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-019-0385-8
This article is cited by
-
Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation
Nature (2022)
-
Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere
Communications Earth & Environment (2021)
-
Revisiting the Concentration Observations and Source Apportionment of Atmospheric Ammonia
Advances in Atmospheric Sciences (2020)
-
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
Nature (2020)
-
Intercomparison of in-situ aircraft and satellite aerosol measurements in the stratosphere
Scientific Reports (2019)