Article | Published:

High-altitude water ice cloud formation on Mars controlled by interplanetary dust particles

Abstract

Submicrometre-size meteoric smoke aggregates form when interplanetary dust particles ablate and re-coagulate in the Martian atmosphere. The MAVEN (Mars Atmosphere and Volatile Evolution) satellite has detected pervasive ionized metallic layers due to meteor ablation at an 80–90 km altitude, which suggests a continuous supply of meteoric smoke particles that settle to lower altitudes. Until now, meteoric smoke has been neglected in general circulation model studies of the formation of Martian water ice clouds. Here we show that when meteoric smoke is included in simulations of the atmospheric circulation on Mars, mesospheric water ice clouds form at low pressures and in discrete layers, polar hood clouds extend to higher altitudes and the seasonal Hadley cell is weakened. Furthermore, we find that the middle atmosphere water ice clouds respond to and influence the diurnal and semidiurnal migrating thermal tides. We conclude that Mars atmospheric simulations that neglect meteoric smoke do not reproduce the observed spatial distribution of water ice clouds and miss crucial radiative impacts on the overall atmospheric dynamics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

MCS retrieval data that support the findings of this study are available as Reduced Data Records in the Planetary Data System Atmospheres Node (https://atmos.nmsu.edu/data_and_services/atmospheres_data/MARS/mcs.html). The simulation data used in this study are stored on the National Center for Atmospheric Research Cheyenne supercomputer and can be made available from the corresponding author upon request.

Code availability

Data processing techniques are available on request from the corresponding author. The MarsCAM-CARMA general circulation model is archived on the CU Boulder Open Science Framework (https://doi.org/10.17605/OSF.I0/7YBZE).

References

  1. 1.

    Clancy, R. T., Wolff, M. J., Whitney, B. A., Cantor, B. A. & Smith, M. D. Mars equatorial mesospheric clouds: global occurrence and physical properties from Mars Global Surveyor Thermal Emission Spectrometer and Mars Orbiter Camera limb observations. J. Geophys. Res. Planets 112, E04004 (2007).

  2. 2.

    Smith, M. D., Wolff, M. J., Clancy, R. T., Kleinböhl, A. & Murchie, S. L. Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations. J. Geophys. Res. Planets 118, 321–334 (2013).

  3. 3.

    Ajello, J. M., Pang, K. D., Lane, A. L., Hord, C. W. & Simmons, K. E. Mariner 9 ultraviolet spectrometer experiment: bright-limb observations of the lower atmosphere of Mars. J. Atmos. Sci. 33, 544–552 (1976).

  4. 4.

    Kleinböhl, A. et al. Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity: MCS retrievals. J. Geophys. Res. Planets 114, E10006 (2009).

  5. 5.

    Fedorova, A. A. et al. Solar infrared occultation observations by SPICAM experiment on Mars-Express: simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol. Icarus 200, 96–117 (2009).

  6. 6.

    Määttänen, A. et al. A complete climatology of the aerosol vertical distribution on Mars from MEx/SPICAM UV solar occultations. Icarus 223, 892–941 (2013).

  7. 7.

    Montmessin, F. et al. SPICAM on Mars Express: A 10 year in-depth survey of the Martian atmosphere. Icarus 297, 195–216 (2017).

  8. 8.

    Vincendon, M., Pilorget, C., Gondet, B., Murchie, S. & Bibring, J.-P. New near-IR observations of mesospheric CO2 and H2O clouds on Mars. J. Geophys. Res. Planets 116, E00J02 (2011).

  9. 9.

    Määttänen, A. et al. Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models. Icarus 209, 452–469 (2010).

  10. 10.

    Listowski, C., Määttänen, A., Montmessin, F., Spiga, A. & Lefèvre, F. Modeling the microphysics of CO2 ice clouds within wave-induced cold pockets in the Martian mesosphere. Icarus 237, 239–261 (2014).

  11. 11.

    Clancy, R. T. et al. The distribution, composition, and particle properties of Mars mesospheric aerosols: an analysis of CRISM Vis-NearIR Limb Spectra with context from near-coincident MCS and MARCI Observations. Icarus 328, 246–273 (2019).

  12. 12.

    McConnochie, T. H. et al. THEMIS-VIS observations of clouds in the Martian mesosphere: altitudes, wind speeds, and decameter-scale morphology. Icarus 210, 545–565 (2010).

  13. 13.

    Sefton-Nash, E. et al. Climatology and first-order composition estimates of mesospheric clouds from Mars Climate Sounder limb spectra. Icarus 222, 342–356 (2013).

  14. 14.

    Haberle, R. M. et al. Documentation of the NASA/Ames Mars global climate model: simulations of the present seasonal water cycle. Icarus (in the press).

  15. 15.

    Urata, R. A. & Toon, O. B. Simulation of the Martian hydrologic cycle with a general circulation model: implications for the ancient Martian climate. Icarus 226, 229–250 (2013).

  16. 16.

    Navarro, T. et al. Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. J. Geophys. Res. Planets 119, 1479–1495 (2014).

  17. 17.

    Heavens, N. G. et al. Water ice clouds over the Martian tropics during northern summer. Geophys. Res. Lett. 37, L18202 (2010).

  18. 18.

    Steele, L. J., Lewis, S. R. & Patel, M. R. The radiative impact of water ice clouds from a reanalysis of Mars Climate Sounder data. Geophys. Res. Lett. 41, 4471–4478 (2014).

  19. 19.

    Hinson, D. P. & Watson, R. J. Temperature inversions, thermal tides, and water ice clouds in the Martian tropics. J. Geophys. Res. Planets 109, E01002 (2004).

  20. 20.

    Kleinböhl, A., Wilson, R. J., Kass, D., Schofield, J. T. & McCleese, D. J. The semidiurnal tide in the middle atmosphere of Mars. Geophys. Res. Lett. 40, 1952–1959 (2013).

  21. 21.

    Madeleine, J.-B., Forget, F., Millour, E. & Navarro, T. The influence of radiatively active water ice clouds on the Martian climate. Geophys. Res. Lett. 39, L23202 (2012).

  22. 22.

    Määttänen, A. et al. Nucleation studies in the Martian atmosphere. J. Geophys. Res. Planets 110, E02002 (2005).

  23. 23.

    Maltagliati, L. et al. Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science 333, 1868–1871 (2011).

  24. 24.

    Rafkin, S. C. R., Maria, M. R. V. S. & Michaels, T. I. Simulation of the atmospheric thermal circulation of a Martian volcano using a mesoscale numerical model. Nature 419, 697–699 (2002).

  25. 25.

    Heavens, N. G. et al. Extreme detached dust layers near Martian volcanoes: evidence for dust transport by mesoscale circulations forced by high topography. Geophys. Res. Lett. 42, 3730–3738 (2015).

  26. 26.

    Spiga, A., Faure, J., Madeleine, J.-B., Määttänen, A. & Forget, F. Rocket dust storms and detached dust layers in the Martian atmosphere. J. Geophys. Res. Planets 118, 746–767 (2013).

  27. 27.

    Bardeen, C. G., Toon, O. B., Jensen, E. J., Marsh, D. R. & Harvey, V. L. Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere. J. Geophys. Res. Atmos. 113, D17202 (2008).

  28. 28.

    Bardeen, C. G. et al. Improved cirrus simulations in a general circulation model using CARMA sectional microphysics. J. Geophys. Res. Atmos. 118, 11679–11697 (2013).

  29. 29.

    Crismani, M. M. J. et al. Detection of a persistent meteoric metal layer in the Martian atmosphere. Nat. Geosci. 10, 401–404 (2017).

  30. 30.

    Plane, J. M. C. et al. Meteoric metal chemistry in the Martian atmosphere. J. Geophys. Res. Planets 123, 695–707 (2018).

  31. 31.

    Wolff, M. & Clancy, R. T. et al. Constraints on the size of Martian aerosols from thermal emission spectrometer observations. J. Geophys. Res. Planets 108, 5097 (2003).

  32. 32.

    McCleese, D. J. et al. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosols. J. Geophys. Res. Planets 115, E12016 (2010).

  33. 33.

    Mulholland, D. P., Lewis, S. R., Read, P. L., Madeleine, J.-B. & Forget, F. The solsticial pause on Mars: 2 modelling and investigation of causes. Icarus 264, 465–477 (2016).

  34. 34.

    Wilson, R. J., Neumann, G. A. & Smith, M. D. Diurnal variation and radiative influence of Martian water ice clouds. Geophys. Res. Lett. 34, L02710 (2007).

  35. 35.

    Kahre, M. A., Hollingsworth, J. L., Haberle, R. M. & Wilson, R. J. Coupling the Mars dust and water cycles: the importance of radiative-dynamic feedbacks during northern hemisphere summer. Icarus 260, 477–480 (2015).

  36. 36.

    Lee, C. et al. Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder. J. Geophys. Res. Planets 114, E03005 (2009).

  37. 37.

    Zurek, R. W. Surface pressure response to elevated tidal heating sources: comparison of Earth and Mars. J. Atmos. Sci. 37, 1132–1136 (1980).

  38. 38.

    Withers, P. & Catling, D. C. Observations of atmospheric tides on Mars at the season and latitude of the Phoenix atmospheric entry. Geophys. Res. Lett. 37, L24204 (2010).

  39. 39.

    Withers, P., Pratt, R., Bertaux, J.-L. & Montmessin, F. Observations of thermal tides in the middle atmosphere of Mars by the SPICAM instrument. J. Geophys. Res. Planets 116, E11005 (2011).

  40. 40.

    Banfield, D., Conrath, B., Pearl, J. C., Smith, M. D. & Christensen, P. Thermal tides and stationary waves on Mars as revealed by Mars Global Surveyor thermal emission spectrometer. J. Geophys. Res. Planets 105, 9521–9537 (2000).

  41. 41.

    Guzewich, S. D., Talaat, E. R. & Waugh, D. W. Observations of planetary waves and nonmigrating tides by the Mars Climate Sounder. J. Geophys. Res. Planets 117, E03010 (2012).

  42. 42.

    Sato, T. M. et al. Tidal variations in the Martian lower atmosphere inferred from Mars Express Planetary Fourier Spectrometer temperature data. Geophys. Res. Lett. 38, L24205 (2011).

  43. 43.

    Withers, P., Bougher, S. W. & Keating, G. M. The effects of topographically-controlled thermal tides in the Martian upper atmosphere as seen by the MGS accelerometer. Icarus 164, 14–32 (2003).

  44. 44.

    Zurek, R. W. Atmospheric tidal forcing of the zonal-mean circulation: the Martian dusty atmosphere. J. Atmos. Sci. 43, 652–670 (1986).

  45. 45.

    Forbes, J. M. & Miyahara, S. Solar semidiurnal tide in the dusty atmosphere of Mars. J. Atmos. Sci. 63, 1798–1817 (2006).

  46. 46.

    Michelangeli, D. V., Toon, O. B., Haberle, R. M. & Pollack, J. B. Numerical simulations of the formation and evolution of water ice clouds in the Martian atmosphere. Icarus 102, 261–285 (1993).

  47. 47.

    Colaprete, A., Toon, O. B. & Magalhães, J. A. Cloud formation under Mars Pathfinder conditions. J. Geophys. Res. Planets 104, 9043–9053 (1999).

  48. 48.

    Urata, R. A. & Toon, O. B. A new general circulation model for Mars based on the NCAR Community Atmosphere Model. Icarus 226, 336–354 (2013).

  49. 49.

    Hartwick, V. MarsCAM-CARMA (Open Science Framework, 2019); https://doi.org/10.17605/OSF.IO/7YBZE

  50. 50.

    Kahre, M. A., Murphy, J. R., Haberle, R. M., Montmessin, F. & Schaeffer, J. Simulating the Martian dust cycle with a finite surface dust reservoir. Geophys. Res. Lett. 32, L20204 (2005).

  51. 51.

    Newman, C. E., Lewis, S. R., Read, P. L. & Forget, F. Modeling the Martian dust cycle, 1. Representations of dust transport processes. J. Geophys. Res. Planets 107, 6-1–6-18 (2002).

  52. 52.

    Wolff, M. J. et al. Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES. J. Geophys. Res. Planets 111, E12S17 (2006).

  53. 53.

    Warren, S. G. Optical constants of ice from the ultraviolet to the microwave. Appl. Opt. 23, 1206–1225 (1984).

  54. 54.

    Schneider, N. M. et al. MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars. Geophys. Res. Lett. 42, 4755–4761 (2015).

  55. 55.

    Crismani, M. M. J. et al. The impact of comet Siding Spring’s meteors on the Martian atmosphere and ionosphere. J. Geophys. Res. Planets 123, 2613–2627 (2018).

  56. 56.

    Nachbar, M. et al. Laboratory measurements of heterogeneous CO2 ice nucleation on nanoparticles under conditions relevant to the Martian mesosphere. J. Geophys. Res. Planets 121, 753–769 (2016).

  57. 57.

    Trainer, M. G., Toon, O. B. & Tolbert, M. A. Measurements of depositional ice nucleation on insoluble substrates at low temperatures: implications for Earth and Mars. J. Phys. Chem. C 113, 2036–2040 (2009).

  58. 58.

    Kuroda, T., Medvedev, A. S., Kasaba, Y. & Hartogh, P. Carbon dioxide ice clouds, snowfalls, and baroclinic waves in the northern winter polar atmosphere of Mars: CO2 snowfalls on Mars. Geophys. Res. Lett. 40, 1484–1488 (2013).

  59. 59.

    Kleinböhl, A., Friedson, A. J. & Schofield, J. T. Two-dimensional radiative transfer for the retrieval of limb emission measurements in the Martian atmosphere. J. Quant. Spectrosc. Radiat. Transf. 187, 511–522 (2017).

Download references

Acknowledgements

This material is based on work supported by NASA’s Habitable Worlds Program, NNX16AO80G, the National Science Foundation Graduate Research Fellowship under grant no. 1144083 and NASA’s Nexus for Exoplanet System Science Program NNX15AE05G. We thank R. Urata, J. Wilson and D. Marsh for helpful suggestions. We thank J. Plane for providing the size distributions of ablated IDPs and insight into their abundance and chemistry.

Author information

V.L.H. and O.B.T contributed to the scientific discussions and designed the study. V.L.H. performed all the computer simulations, developed the parameterizations for the NCAR Mars GCM and wrote the manuscript. N.G.H provided and analysed the MCS observational data for comparison with the model results.

Correspondence to V. L Hartwick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion and Figures 1–12

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: The addition of IDPs is important for the formation of middle atmosphere cloud layers at mid and high latitudes.
Fig. 2: Clouds form where the thermal tide is strongest.
Fig. 3: Wintertime polar hood clouds are too shallow in simulations without IDPs.
Fig. 4: The semidiurnal component of the thermal tide is enhanced by cloud radiative feedbacks.