Slurry extrusion on Ceres from a convective mud-bearing mantle


Ceres is a 940-km-diameter dwarf planet that is predominantly composed of silicates and water ice. In Ceres’ partially differentiated interior, extrusive processes have led to the emplacement on its surface of domes with heights of kilometres. Here we report the analysis of a gravity anomaly detected by the Dawn spacecraft, which is associated with the geologically recent dome Ahuna Mons. By modelling the anomaly with a mass concentration method, we determine that the subsurface structure includes a regional mantle uplift, which we interpret as a plume. This structure is the probable source of fluids forming Ahuna Mons and, together with constraints from the dome’s morphology, indicates a rheological regime corresponding to a slurry of brine and solid particles. We propose that the properties of such a solid–liquid mixture can explain the viscous relaxation and the mineralogy of the dome. The presence of a plume and of slurry material indicate recent convection in a mud-bearing mantle. The inferred slurry extrusion on Ceres differs from the water-dominated cryovolcanism of icy satellites, and so reveals compositional and rheological diversity in extrusive phenomena on planetary surfaces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Colocation of volcanic dome and isostatic gravity anomaly.
Fig. 2: Gravity anomaly residuals for two solutions of the mascon analysis.
Fig. 3: Mascon parameters shown as histograms of the final ensemble of solutions.
Fig. 4: Constraints on the properties of the ascending fluid.

Data availability

The data Ceres18C described in ref. 5 used in this study are available at

The Ceres HAMO Digital Terrain Model described in ref. 8 used in this study is available at

Code availability

The computer codes associated with this paper are presented in Methods.


  1. 1.

    Russell, C. T. et al. Dawn arrives at Ceres: exploration of a small, volatile-rich world. Science 353, 1008–1010 (2016).

    Article  Google Scholar 

  2. 2.

    Castillo-Rogez, J. C. & McCord, T. B. Ceres’ evolution and present state constrained by shape data. Icarus 205, 443–459 (2010).

    Article  Google Scholar 

  3. 3.

    Park, R. S. et al. A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature 537, 515 (2016).

    Article  Google Scholar 

  4. 4.

    Konopliv, A. S. et al. The Ceres gravity field, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data. Icarus 299, 411–429 (2017).

    Article  Google Scholar 

  5. 5.

    Ermakov, A. I. et al. Constraints on Ceres’ internal structure and evolution from its shape and gravity measured by the Dawn spacecraft. J. Geophys. Res. 122, 2267–2293 (2017).

    Article  Google Scholar 

  6. 6.

    Mao, X. & McKinnon, W. B. Faster paleospin and deep-seated uncompensated mass as possible explanations for Ceres’ present-day shape and gravity. Icarus 299, 430–442 (2017).

    Article  Google Scholar 

  7. 7.

    Fu, R. R. et al. The interior structure of Ceres as revealed by surface topography. Earth Planet. Sci. Lett. 476, 153–164 (2017).

    Article  Google Scholar 

  8. 8.

    Roatsch,T. et al. DAWN FC2 DERIVED CERES HAMO DTM SPG V1.0, DAWN-A-FC2-5-CERESHAMODTMSPG-V1.0 (NASA Planetary Data System, 2016).

  9. 9.

    Ruesch, O. et al. Cryovolcanism on Ceres. Science 353, aaf4286 (2016).

    Article  Google Scholar 

  10. 10.

    Zambon, F. et al. Spectral analysis of Ahuna Mons from Dawn mission’s visible‐infrared spectrometer. Geophys. Res. Lett. 44, 97–104 (2017).

    Article  Google Scholar 

  11. 11.

    Tricarico, P. True polar wander of Ceres due to heterogeneous crustal density. Nat. Geosci. 11, 819–824 (2018).

    Article  Google Scholar 

  12. 12.

    Formisano, M., Federico, C., De Andelis, S., De Sanctis, M. C. & Magni, G. The stability of the crust of the dwarf planet Ceres. Mon. Not. R. Astron. Soc. 463, 520–528 (2016).

    Article  Google Scholar 

  13. 13.

    Neumann, W., Breuer, D. & Spohn, T. Modelling the internal structure of Ceres: coupling of accretion with compaction by creep and implications for the water-rock differentiation. Astron. Astrophys. 584, A117 (2015).

    Article  Google Scholar 

  14. 14.

    Mazarico, E. et al. The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit. J. Geophys. Res. 119, 2417–2436 (2014).

    Article  Google Scholar 

  15. 15.

    Melosh, H. J. et al. The origin of lunar mascon basins. Science 340, 1552–1555 (2013).

    Article  Google Scholar 

  16. 16.

    Bland, M. T. et al. Morphological indicators of a mascon beneath Ceres’ largest crater, Kerwan. Geophys. Res. Lett. 45, 1297–1304 (2018).

    Article  Google Scholar 

  17. 17.

    Marchi, S. et al. The missing large impact craters on Ceres. Nat. Commun. 7, 12257 (2016).

    Article  Google Scholar 

  18. 18.

    Travis, B. J., Bland, P. A., Feldman, W. C. & Sykes, M. V. Hydrothermal dynamics in CM-based model of Ceres. Meteorit. Planet. Sci. 53, 2008–2032 (2018).

    Article  Google Scholar 

  19. 19.

    Quick, L. C. et al. A possible brine reservoir beneath Occator crater: thermal and compositional evolution and the formation of the Vinalia Faculae. Icarus 320, 119–135 (2019).

    Article  Google Scholar 

  20. 20.

    Davis, D. W., Lowenstein, T. K. & Spencer, R. J. Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O, and NaCl–CaCl2–H2O. Geochim. Cosmochim. Acta 54, 596–601 (1990).

    Article  Google Scholar 

  21. 21.

    Fagents, S. A. Considerations for effusive cryovolcanism on Europa: the post-Galileo perspective. J. Geophys. Res. 108, 5139 (2003).

    Article  Google Scholar 

  22. 22.

    Ruesch, O. et al. Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains. Icarus 320, 39–48 (2019).

    Article  Google Scholar 

  23. 23.

    Blake, S. in Lava Flows and Domes (ed. Fink, J. H.) 88–126 (Springer, 1990).

  24. 24.

    Spera, F. J. in Encyclopedia of Volcanoes (ed. Sigurdson, H.) 171–190 (Academic, 2000).

  25. 25.

    Shields, A. Application of Similarity Principles and Turbulence Research to Bed-Load Movement (Mitteilungen der Preussischen Versuchsanstalt fur Wasserbau und Schiffbau, 1936).

  26. 26.

    Sori, M. M. et al. The vanishing cryovolcanoes of Ceres. Geophys. Res. Lett. 44, 1243–1250 (2017).

    Article  Google Scholar 

  27. 27.

    Sori, M. M. et al. Cryovolcanic rates on Ceres revealed by topography. Nat. Astron. 2, 946–950 (2018).

    Article  Google Scholar 

  28. 28.

    Marchi, S. et al. An aqueously altered carbon-rich Ceres. Nat. Astron. 3, 140–145 (2019).

    Article  Google Scholar 

  29. 29.

    Neveu, M. & Desch, S. J. Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy ice mantle. Geophys. Res. Lett. 42, 10,197–10,206 (2015).

    Article  Google Scholar 

  30. 30.

    Kargel, J. S. Cryovolcanism on the icy satellites. Earth Moon Planets 67, 101–113 (1995).

    Article  Google Scholar 

  31. 31.

    Krieger, I. M. & Dougherty, T. J. A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 111, 137–152 (1959).

    Article  Google Scholar 

  32. 32.

    Sisko, A. W. The flow of lubricating greases. Ind. Eng. Chem. 50, 1789–1792 (1958).

    Article  Google Scholar 

  33. 33.

    Mosegaard, K. & Tarantola, A. Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res. 100(B7), 12431–12447 (1995).

    Article  Google Scholar 

  34. 34.

    Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Article  Google Scholar 

  35. 35.

    Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970).

    Article  Google Scholar 

  36. 36.

    Schubert, G., Turcotte, D. L. & Olson, P. Mantle Convection in the Earth and Planets (Cambridge Univ. Press, 2001).

  37. 37.

    Yomogida, K. & Matsui, T. Multiple parent bodies of ordinary chondrites. Earth Planet. Sci. Lett. 68, 34–42 (1984).

    Article  Google Scholar 

  38. 38.

    Chase, M. W. Jr NIST-JANAF Thermochemical Tables 4th edn (Monograph 9) (National Institute of Standards and Technology, 1998).

  39. 39.

    Dorsey, N. E. Properties of Ordinary Water‐Substance in All Its Phases: Water‐Vapor, Water, and All the Ices (ACS Monograph Series 81, Reinhold Publishing Corporation, 1940).

  40. 40.

    Ramires, M. L. V. et al. Standard reference data for the thermal conductivity of water. J. Phys. Chem. Ref. Data 24, 1377–1381 (1995).

    Article  Google Scholar 

  41. 41.

    Klinger, J. Influence of a phase transition of ice on the heat and mas balance of comets. Science 209, 271–272 (1980).

    Article  Google Scholar 

  42. 42.

    Grindrod, P. M. et al. The long-term stability of a possible aqueous ammonium sulfate ocean inside Titan. Icarus 197, 137–151 (2008).

    Article  Google Scholar 

  43. 43.

    Shoji, D. & Kurita, K. Compositional diapirism as the origin of the low-albedo terrain and vaporization at mid latitude on Ceres. J. Geophys. Res. 119, 2457–2470 (2014).

    Article  Google Scholar 

  44. 44.

    Hilairet, N. et al. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science 318, 1910–1912 (2007).

    Article  Google Scholar 

  45. 45.

    Dhodapkar, S., Jacobs, K. & Hu, S. in Multiphase Flow Handbook (ed. Crowe, C. T.) Ch. 4 (CRC, 2006).

  46. 46.

    Weisbrod, N., Yechieli, Y., Shandalov, S. & Lensky, N. On the viscosity of natural hyper-saline solutions and its importance: the Dead Sea brines. J. Hydrol. 532, 46–51 (2016).

    Article  Google Scholar 

  47. 47.

    Turian, R. M., Ma, T. W., Hsu, F. L. G. & Sung, D. J. Characterization, settling, and rheology of concentrated fine particulate mineral slurries. Powder Technol. 93, 219–233 (1997).

    Article  Google Scholar 

  48. 48.

    Krieger, I. M. & Dougherty, T. J. A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3, 137–152 (1959).

    Article  Google Scholar 

  49. 49.

    Kruif, C. H., van Iersel, E. M. F., Vrij, A. & Russell, W. B. Hard sphere colloidal dispersions: viscosity as a function of shear rate and volume fraction. J. Chem. Phys. 83, 4717–4725 (1985).

    Article  Google Scholar 

  50. 50.

    Mueller, S., Llewellin, E. W. & Mader, H. M. The rheology of suspensions of solid particles. Proc. R. Soc. A 466, 1201–1228 (2010).

    Article  Google Scholar 

  51. 51.

    Genovese, D. B. Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites. Adv. Colloid Interface Sci. 171-172, 1–16 (2012).

    Article  Google Scholar 

  52. 52.

    Tadros, T. F. Rheology of Dispersions: Principles and Applications (Wiley-VCH, 2010).

  53. 53.

    Darby, R. Chemical Engineering Fluid Mechanics (Dekker, 2001).

Download references


The Dawn spacecraft Operations and Flight teams made the observations possible and are acknowledged for their efforts. O.R. is supported by an appointment to the ESA Research Fellow Programme at the European Space and Technology Centre.

Author information




O.R. conceived the study and performed the rheology analysis. A.G. developed the mascon model, and performed the gravity and MCMC analyses. W.N. performed the mantle convection analysis. L.C.Q. and J.C.C.-R. contributed to the development of the rheological and compositional concepts. C.A.R., C.T.R and M.T.Z. contributed to the discussion of the results. O.R. and A.G. wrote the initial manuscript draft. All authors edited the manuscript and approved the final version.

Corresponding author

Correspondence to Ottaviano Ruesch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruesch, O., Genova, A., Neumann, W. et al. Slurry extrusion on Ceres from a convective mud-bearing mantle. Nat. Geosci. 12, 505–509 (2019).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing