Mesosiderite formation on asteroid 4 Vesta by a hit-and-run collision


Collision and disruption processes of protoplanetary bodies in the early Solar System are key to understanding the genesis of diverse types of main-belt asteroids. Mesosiderites are stony-iron meteorites that formed by the mixing of howardite–eucrite–diogenite-like crust and molten core materials and provide unique insights into the catastrophic break-up of differentiated asteroids. However, the enigmatic formation process and the poorly constrained timing of metal–silicate mixing complicate the assignment to potential parent bodies. Here we report the high-precision uranium–lead dating of mesosiderite zircons by isotope dilution thermal ionization mass spectrometry to reveal an initial crust formation 4,558.5 ± 2.1 million years ago and metal–silicate mixing at 4,525.39 ± 0.85 million years ago. The two distinct ages coincide with the timing of the crust formation and a large-scale reheating event on the eucrite parent body, probably the asteroid Vesta. This chronological coincidence corroborates that Vesta is the parent body of mesosiderite silicates. Mesosiderite formation on Vesta can be explained by a hit-and-run collision 4,525.4 million years ago that caused the thick crust observed by NASA’s Dawn mission and explains the missing olivine in mesosiderites, howardite–eucrite–diogenite meteorites and vestoids.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: 207Pb–206Pb dates for mesosiderite zircons.
Fig. 2: Histograms and kernel density estimates of mesosiderite zircon dates and various dates of basaltic eucrite.
Fig. 3: Mesosiderite formation on Vesta in an internal-origin model that adopts a hit-and-run collision.
Fig. 4: Crust evolution in the south pole region.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Wasson, J. T. & Rubin, A. E. Formation of mesosiderites by low-velocity impacts: a natural consequence of planet formation. Nature 318, 168–170 (1985).

    Article  Google Scholar 

  2. 2.

    Hassanzadeh, J., Rubin, A. E. & Wasson, J. T. Compositions of large metal nodules in mesosiderites: links to iron meteorite groups IIIAB and the origin of mesosiderite subgroups. Geochim. Cosmochim. Acta 54, 3197–3208 (1990).

    Article  Google Scholar 

  3. 3.

    Scott, E. R. D., Haack, H. & Love, S. G. Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid. Meteorit. Planet. Sci. 36, 869–881 (2001).

    Article  Google Scholar 

  4. 4.

    Mittlefehldt, D. W., Chou, C.-L. & Wasson, J. T. Mesosiderites and howardites: Igneous formation and possible genetic relationships. Geochim. Cosmochim. Acta 43, 673–688 (1979).

    Article  Google Scholar 

  5. 5.

    Greenwood, R. C., Franchi, I. A., Jambon, A., Barrat, J. A. & Burbine, T. H. Oxygen isotope variation in stony-iron meteorites. Science 313, 1763–1765 (2006).

    Article  Google Scholar 

  6. 6.

    Trinquier, A., Birck, J.-L. & Allègre, C. G. Widespread 54Cr heterogeneities in the inner Solar System. Astrophys. J. 655, 1179–1185 (2007).

    Article  Google Scholar 

  7. 7.

    Trinquier, A., Birck, J.-L., Allegre, C.-J., Göpel, C. & Ulfbeck, D. 53Mn–53Cr systematics of the early Solar System revisited. Geochim. Cosmochim. Acta 72, 5146–5163 (2008).

    Article  Google Scholar 

  8. 8.

    McCord, T. B., Adams, J. B. & Johnson, T. V. Asteroid Vesta: spectral reflectivity and compositional implications. Science 168, 1445–1447 (1970).

    Article  Google Scholar 

  9. 9.

    De Sanctis, M. C. et al. Spectroscopic characterization of mineralogy and its diversity across Vesta. Science 336, 697–700 (2012).

    Article  Google Scholar 

  10. 10.

    Prettyman, T. H. et al. Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science 338, 242–246 (2012).

    Article  Google Scholar 

  11. 11.

    Rubin, A. E. & Mittlefehldt, D. W. Evolutionary history of the mesosiderite asteroid: a chronologic and petrologic synthesis. Icarus 101, 201–212 (1993).

    Article  Google Scholar 

  12. 12.

    Stewart, B. W., Papanastassiou, D. A. & Wasserburg, G. J. Sm–Nd chronology and petrogenesis of mesosiderites. Geochim. Cosmochim. Acta 58, 3487–3509 (1994).

    Article  Google Scholar 

  13. 13.

    Ireland, T. R. & Wlotzka, F. The oldest zircons in the Solar System. Earth Planet. Sci. Lett. 109, 1–10 (1992).

    Article  Google Scholar 

  14. 14.

    Haba, M. K., Yamaguchi, A., Kagi, H., Nagao, K. & Hidaka, H. Trace element composition and U–Pb age of zircons from Estherville: constraints on the timing of the metal–silicate mixing event on the mesosiderite parent body. Geochim. Cosmochim. Acta 215, 76–91 (2017).

    Article  Google Scholar 

  15. 15.

    Koike, M., Sugiura, N., Takahata, N., Ishida, A. & Sano, Y. U–Pb and Hf–W dating of young zircon in mesosiderite Asuka 882023. Geophys. Res. Lett. 44, 1251–1259 (2017).

    Article  Google Scholar 

  16. 16.

    Vermeesch, P. Dissimilarity measures in detrital geochronology. Earth Sci. Rev. 178, 310–321 (2018).

    Article  Google Scholar 

  17. 17.

    Hewins, R. H. The case for a melt matrix in plagioclase–POIK mesosiderites. J. Geophys. Res. 89, C289–C297 (1984).

    Article  Google Scholar 

  18. 18.

    Delaney, J. S., Nehru, C. E., Prinz, M. & Harlow, G. E. In Proc. Lunar Planet. Sci. Conf. 12th, 1315–1342 (Pergamon, 1981).

  19. 19.

    Prinz, M., Nehru, C. E., Delaney, J. S., Harlow, G. E. & Bedell, R. L. In Proc. Lunar Planet. Sci. Conf. 11th, 1055–1071 (Pergamon, 1980).

  20. 20.

    Delaney, J. S., Prinz, M. & Takeda, H. The polymict eucrites. J. Geophys. Res. 89 (Suppl.), C251–C288 (1984).

    Article  Google Scholar 

  21. 21.

    Harlow, G. E., Delaney, J. S., Nehru, C. E. & Prinz, M. Metamorphic reactions in mesosiderites: origin of abundant phosphate and silica. Geochim. Cosmochim. Acta 46, 339–348 (1982).

    Article  Google Scholar 

  22. 22.

    Rubin, A. E. & Mittlefehldt, D. W. Classification of mafic clasts from mesosiderites: implications for endogenous igneous processes. Geochim. Cosmochim. Acta 56, 827–840 (1992).

    Article  Google Scholar 

  23. 23.

    Misawa, K., Yamaguchi, A. & Kaiden, H. U–Pb and 207Pb–206Pb ages of zircons from basaltic eucrites: implications for early basaltic volcanism on the eucrite parent body. Geochim. Cosmochim. Acta 69, 5847–5861 (2005).

    Article  Google Scholar 

  24. 24.

    Zhou, Q. et al. SIMS Pb–Pb and U–Pb age determination of eucrite zircons at <5 mm scale and the first 50 Ma of the thermal history of Vesta. Geochim. Cosmochim. Acta 110, 152–175 (2013).

    Article  Google Scholar 

  25. 25.

    Iizuka, T. et al. Timing of global crustal metamorphism on Vesta as revealed by high-precision U–Pb dating and trace element chemistry of eucrite zircon. Earth Planet. Sci. Lett. 409, 182–192 (2015).

    Article  Google Scholar 

  26. 26.

    Hopkins, M., Mojzsis, S., Bottke, W. & Abramov, O. Micrometer-scale U–Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body. Icarus 245, 367–378 (2015).

    Article  Google Scholar 

  27. 27.

    Srinivasan, G., Whitehouse, M. J., Weber, I. & Yamaguchi, A. The crystallization age of eucrite zircon. Science 317, 345–347 (2007).

    Article  Google Scholar 

  28. 28.

    Ireland, T. R., Saiki, K. & Takeda, H. In 23rd Lunar Planet. Sci. Conf. abstr. 569–570 (Lunar and Planetary Institute, 1992).

  29. 29.

    Roszjar, J. et al. Prolonged magmatism on 4 Vesta inferred from Hf–W analyses of eucrite zircon. Earth Planet. Sci. Lett. 452, 216–226 (2016).

    Article  Google Scholar 

  30. 30.

    Roszjar, J. et al. Thermal history of Northwest Africa (NWA) 5073—a coarse grained Stannern-trend eucrite containing cm-sized pyroxenes and large zircon grains. Meteor. Planet. Sci. 46, 1754–1773 (2011).

    Article  Google Scholar 

  31. 31.

    Shukolyukov, A. & Begemann, F. Pu–Xe dating of eucrites. Geochim. Cosmochim. Acta 60, 2453–2480 (1996).

    Article  Google Scholar 

  32. 32.

    Premo, W. R. & Tatsumoto, M. In Proc. 22nd Lunar Planet. Sci. Conf. 381–397 (Lunar and Planetary Institute, 1992).

  33. 33.

    Haba, M. K., Yamaguchi, A., Horie, K. & Hidaka, H. Major and trace elements of zircons from basaltic eucrites: implications for the formation of zircons on the eucrite parent body. Earth Planet. Sci. Lett. 387, 10–21 (2014).

    Article  Google Scholar 

  34. 34.

    Carter, P. J., Leinhardt, Z. M., Elliott, T., Stewart, S. T. & Walter, M. J. Collisional stripping of planetary crusts. Earth Planet. Sci. Lett. 484, 276–286 (2018).

    Article  Google Scholar 

  35. 35.

    Asphaug, E. Similar-sized collisions and the diversity of planets. Chem. Erde Geochem. 70, 199–219 (2010).

    Article  Google Scholar 

  36. 36.

    Ammannito, E. et al. Olivine in an unexpected location on Vesta’s surface. Nature 504, 122–125 (2013).

    Article  Google Scholar 

  37. 37.

    Ruesch, O. et al. Detections and geologic context of local enrichments in olivine on Vesta with VIR/Dawn data. J. Geophys. Res. Planets 119, 2078–2108 (2014).

    Article  Google Scholar 

  38. 38.

    Clenet, H. et al. A deep crust–mantle boundary in the asteroid 4 Vesta. Nature 511, 303–306 (2014).

    Article  Google Scholar 

  39. 39.

    Ruzicka, A., Snyder, G. A. & Taylor, L. Vesta as the HED parent body: implications for the size of a core and for large-scale differentiation. Meteorit. Planet. Sci. 32, 825–840 (1997).

    Article  Google Scholar 

  40. 40.

    Mandler, B. E. & Elkins-Tanton, L. T. The origin of eucrites, diogenites, and olivine diogenites: magma ocean crystallization and shallow magma chamber processes on Vesta. Meteorit. Planet. Sci. 48, 2333–2349 (2013).

    Article  Google Scholar 

  41. 41.

    Barrat, J.-A., Yamaguchi, A., Zanda, B., Bollinger, C. & Bohn, M. Relative chronology of crust formation on asteroid Vesta: insights from the geochemistry of diogenites. Geochim. Cosmochim. Acta 74, 6218–6231 (2010).

    Article  Google Scholar 

  42. 42.

    Consolmagno, G. J. et al. Is Vesta an intact and pristine protoplanet? Icarus 254, 190–201 (2015).

    Article  Google Scholar 

  43. 43.

    Hopfe, W. D. & Goldstein, J. I. The metallographic cooling rate method revised: application to iron meteorites and mesosiderites. Meteorit. Planet. Sci. 36, 135–154 (2001).

    Article  Google Scholar 

  44. 44.

    Bogard, D. D. & Garrison, D. H. 39Ar–40Ar ages and thermal history of mesosiderites. Geochim. Cosmochim. Acta 62, 1459–1468 (1990).

    Article  Google Scholar 

  45. 45.

    Schenk, P. et al. The geologically recent giant impact basins at Vesta’s south pole. Science 336, 694–697 (2012).

    Article  Google Scholar 

  46. 46.

    Jutzi, M., Asphang, E., Gillet, P., Barrat, J.-A. & Benz, W. The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature 494, 207–210 (2013).

    Article  Google Scholar 

  47. 47.

    Binzel, R. P. & Xu, S. Chips off of asteroid 4 Vesta: evidence for the parent body of basaltic achondrite meteorites. Science 260, 186–191 (1993).

    Article  Google Scholar 

  48. 48.

    Nesvorný, D. et al. Fugitives from the Vesta family. Icarus 193, 85–95 (2008).

    Article  Google Scholar 

  49. 49.

    Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).

    Article  Google Scholar 

  50. 50.

    Krogh, T. E. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 37, 488–494 (1973).

    Article  Google Scholar 

  51. 51.

    Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312 (1997).

    Article  Google Scholar 

  52. 52.

    von Quadt, A. et al. High-precision zircon U/Pb geochronology by ID-TIMS using new 1013 ohm resistors. J. Anal. Spectrom. 31, 658–665 (2016).

    Article  Google Scholar 

  53. 53.

    Wotzlaw, J. F., Buret, Y., Large, S. J. E., Szymanowski, D. & von Quadt, A. ID-TIMS U–Pb geochronology at the 0.1‰ level using 1013 Ω resistors and simultaneous U and 18O/16O isotope ratio determination for accurate UO2 interference correction. J. Anal. Spectrom. 32, 579–586 (2017).

    Article  Google Scholar 

  54. 54.

    Bowring, J. F., McLean, N. M. & Bowring, S. A. Engineering cyber infrastructure for U–Pb geochronology: Tripoli and U-Pb_Redux. Geochem. Geophys. Geosyst. 12, Q0AA19 (2011).

    Article  Google Scholar 

  55. 55.

    McLean, N. M., Bowring, J. F. & Bowring, S. A. An algorithm for U–Pb isotope dilution data reduction and uncertainty propagation. Geochem. Geophys. Geosyst. 12, Q0AA18 (2011).

    Article  Google Scholar 

  56. 56.

    Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889–1906 (1971).

    Article  Google Scholar 

  57. 57.

    Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).

    Article  Google Scholar 

  58. 58.

    Brennecka, G. A. & Wadhwa, M. Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proc. Natl Acad. Sci. USA 109, 9299–9303 (2012).

    Article  Google Scholar 

Download references


The authors thank H. Genda for insightful discussions. M.K.H. acknowledges support from JSPS Postdoctoral Fellowship for Research Abroad (No. 27-699), J.F.W. from ETH Zurich postdoctoral fellowship program (FEL-14-09), Y.-J.L., and M.S. from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant agreement No. [279779] and the Swiss National Science Foundation (Project 200021_149282), and A.Y. from NIPR Research Project KP307.

Author information




M.K.H. and M.S. designed the research. M.K.H., Y.-J.L. and A.Y. prepared the zircon samples. J.-F.W. performed U–Pb dating of zircons. M.K.H. took the lead in writing the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Makiko K. Haba.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haba, M.K., Wotzlaw, J., Lai, Y. et al. Mesosiderite formation on asteroid 4 Vesta by a hit-and-run collision. Nat. Geosci. 12, 510–515 (2019).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing