Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Continental-scale soil carbon composition and vulnerability modulated by regional environmental controls

Subjects

Abstract

Soil organic carbon (C) is an essential component of the global C cycle. Processes that control its composition and dynamics over large scales are not well understood. Thus, our understanding of C cycling is incomplete, which makes it difficult to predict C gains and losses due to changes in climate, land use and management. Here we show that controls on the composition of organic C, the particulate, humus and resistant fractions, and the potential vulnerability of C to decomposition across Australia are distinct, scale-dependent and variable. We used machine-learning with 5,721 topsoil measurements to show that, continentally, the climate, soil properties (for example, total nitrogen and pH) and elevation are dominant controls. However, we found that such general assessments disregard underlying region-specific controls that affect the distribution of the organic C fractions and vulnerability. This can lead to misinterpretations that prejudice our understanding of soil C processes and dynamics. Regionally, climate is mediated through interactions with soil properties, mineralogy and topography. In some regions, climate is uninfluential. These results highlight the need for regional assessments of soil C dynamics and more local parameterization of biogeochemical and Earth system models. Our analysis propounds the development of region-specific strategies for effective C management and climate change mitigation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Spatial distribution of the soil organic C fractions and potential vulnerability.
Fig. 2: Continental-scale controls of soil organic C composition ordered by theme.
Fig. 3: Regional distribution and controls of the POC, HOC and ROC and potential vulnerability of organic C to decomposition.
Fig. 4

Data availability

The data sets generated during and/or analysed during the current study are not publicly available but are available from the corresponding author on reasonable request. The digital soil maps of the particulate, humus and resistant fractions are available for download from https://doi.org/10.25919/5ca56d1d0166b.

Code availability

The code used for the machine-learning modelling is available from the corresponding author on reasonable request.

References

  1. 1.

    Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47, 151–163 (1996).

    Article  Google Scholar 

  2. 2.

    Trumbore, S. E., Chadwick, O. A. & Amundson, R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272, 393–396 (1996).

    Article  Google Scholar 

  3. 3.

    Baisden, W. T. & Amundson, R. An analytical approach to ecosystem biogeochemistry modeling. Ecol. Appl. 13, 649–663 (2003).

    Article  Google Scholar 

  4. 4.

    Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).

    Article  Google Scholar 

  5. 5.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article  Google Scholar 

  6. 6.

    Jenkinson, D. S. The turnover of organic carbon and nitrogen in soil. Phil. Trans. R. Soc. Lond. B 329, 361–368 (1990).

    Article  Google Scholar 

  7. 7.

    Parton, W. J., Schimel, D. S., Cole, C. V. & Ojima, D. S. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 51, 1173 (1987).

    Article  Google Scholar 

  8. 8.

    Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).

    Article  Google Scholar 

  9. 9.

    Smith, J. U., Smith, P., Monaghan, R. & MacDonald, J. When is a measured soil organic matter fraction equivalent to a model pool? Eur. J. Soil Sci. 53, 405–416 (2002).

    Article  Google Scholar 

  10. 10.

    Krull, E. S., Baldock, J. A. & Skjemstad, J. O. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct. Plant Biol. 30, 207 (2003).

    Article  Google Scholar 

  11. 11.

    Trumbore, S. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol. Appl. 10, 399–411 (2000).

    Article  Google Scholar 

  12. 12.

    Skjemstad, J. O., Spouncer, L. R., Cowie, B. & Swift, R. S. Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools. Aust. J. Soil Res. 42, 79–88 (2004).

    Article  Google Scholar 

  13. 13.

    von Lutzow, M. et al. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 39, 2183–2207 (2007).

    Article  Google Scholar 

  14. 14.

    Zimmermann, M., Leifeld, J., Schmidt, M. W., Smith, P. & Fuhrer, J. Measured soil organic matter fractions can be related to pools in the RothC model. Eur. J. Soil Sci. 58, 658–667 (2007).

    Article  Google Scholar 

  15. 15.

    Baldock, J. A. et al. Quantifying the allocation of soil organic carbon to biologically significant fractions. Soil Res. 51, 561–576 (2013).

    Article  Google Scholar 

  16. 16.

    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).

    Article  Google Scholar 

  17. 17.

    O’Rourke, S. M., Angers, D. A., Holden, N. M. & McBratney, A. B. Soil organic carbon across scales. Glob. Change Biol. 21, 3561–3574 (2015).

    Article  Google Scholar 

  18. 18.

    Isbell, R. F. The Australian Soil Classification Revised 1st edn (CSIRO Publishing, 2002).

  19. 19.

    DAFF Land use of Australia, version 4, 2005–06 dataset (Australian Government Department of Agriculture, Fisheries and Forestry, 2010); http://data.daff.gov.au/anrdl/metadata_files/pa_luav4g9abl07811a00.xml

  20. 20.

    Amundson, R. & Jenny, H. On a state factor model of ecosystems. BioScience 47, 536–543 (1997).

    Article  Google Scholar 

  21. 21.

    Vitousek, P. M. in Factors of Soil Formation: a 50th Anniversary Retrospective (eds Amundson, R., Harden, J. & Singer, M.) 87–97 (Soil Science Society of America Special Publication 33, 1994).

  22. 22.

    Quinlan, J. R. In Proc. AI’92, 5th Australian Conference on Artificial Intelligence (eds Adams, A. & Sterling, L.) 343–348 (World Scientific, 1992).

  23. 23.

    Baldock, J. A. et al. Australian Soil Carbon Research Program. Data Collection v1 (CSIRO, 2013); https://doi.org/10.4225/08/5101F31440A36

  24. 24.

    Hutchinson, M. F. et al. Integrating a global agro-climatic classification with bioregional boundaries in Australia. Glob. Ecol. Biogeogr. 14, 197–212 (2005).

    Article  Google Scholar 

  25. 25.

    Wynn, J. G. et al. Continental-scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls. Glob. Biogeochem. Cycles 20, GB1007 (2006).

    Article  Google Scholar 

  26. 26.

    Hobley, E., Wilson, B., Wilkie, A., Gray, J. & Koen, T. Drivers of soil organic carbon storage and vertical distribution in Eastern Australia. Plant Soil 390, 111–127 (2015).

    Article  Google Scholar 

  27. 27.

    Luo, Z., Feng, W., Luo, Y., Baldock, J. & Wang, E. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob. Change Biol. 23, 4430–4439 (2017).

    Article  Google Scholar 

  28. 28.

    Manzoni, S. & Porporato, A. Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol. Biochem. 41, 1355–1379 (2009).

    Article  Google Scholar 

  29. 29.

    Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).

    Article  Google Scholar 

  30. 30.

    Todd-Brown, K. E. O. et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11, 2341–2356 (2014).

    Article  Google Scholar 

  31. 31.

    Davidson, E. A., Savage, K. E. & Finzi, A. C. A big-microsite framework for soil carbon modeling. Glob. Change Biol. 20, 3610–3620 (2014).

    Article  Google Scholar 

  32. 32.

    Kuzyakov, Y., Friedel, J. K. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).

    Article  Google Scholar 

  33. 33.

    Lajtha, K. et al. Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems. Biogeochemistry 119, 341–360 (2014).

    Article  Google Scholar 

  34. 34.

    Jenkinson, D. S., Adams, D. E. & Wild, A. Model estimates of CO2 emissions from soil in response to global warming. Nature 351, 304–306 (1991).

    Article  Google Scholar 

  35. 35.

    Lal, R. Soil health and carbon management. Food Energy Secur. 5, 212–222 (2016).

    Article  Google Scholar 

  36. 36.

    Smith, P. et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 363, 789–813 (2008).

    Article  Google Scholar 

  37. 37.

    Ogle, S. M., Breidt, F. J. & Paustian, K. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 72, 87–121 (2005).

    Article  Google Scholar 

  38. 38.

    Lal, R. Beyond COP21: potential and challenges of the ‘4 per thousand’ initiative. J. Soil Water Conserv. 71, 20A–25A (2016).

    Article  Google Scholar 

  39. 39.

    Baldock, J. A., Hawke, B., Sanderman, J. & Macdonald, L. M. Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra. Soil Res. 51, 577–595 (2013).

    Article  Google Scholar 

  40. 40.

    Sanderman, J. et al. National Soil Carbon Research Programme: Field and Laboratory Methodologies (CSIRO Land and Water, 2011).

  41. 41.

    Viscarra Rossel, R. A. & Hicks, W. S. Soil organic carbon and its fractions estimated by visible-near infrared transfer functions. Eur. J. Soil Sci. 66, 438–450 (2015).

    Article  Google Scholar 

  42. 42.

    de Caritat, P., Lech, M. E. & McPherson, A. A. Geochemical mapping ‘down under’: selected results from pilot projects and strategy outline for the National Geochemical Survey of Australia. Geochem. Explor. Environ. Anal. 8, 301–312 (2008).

    Article  Google Scholar 

  43. 43.

    Johnston, R. M. et al. ASRIS: the database. Soil Res. 41, 1021–1036 (2003).

    Article  Google Scholar 

  44. 44.

    McKenzie, N. J. & Cresswell, H. P. in Soil Physical Measurement and Interpretation for Land Evaluation (eds McKenzie, N. J., Coughlan, K. J. & Cresswell, H. P.) (CSIRO, 2002).

  45. 45.

    Skjemstad, J. O., Clarke, P., Taylor, J. A., Oades, J. M. & McClure, S. G. The chemistry and nature of protected carbon in soil. Aust. J. Soil Res. 34, 251–271 (1996).

    Article  Google Scholar 

  46. 46.

    Smernik, R. J. & Oades, J. M. The use of spin counting for determining quantitation in solid state 13C NMR spectra of natural organic matter. 1. Model systems and the effects of paramagnetic impurities. Geoderma 96, 101–129 (2000).

    Article  Google Scholar 

  47. 47.

    Smernik, R. J. & Oades, J. M. The use of spin counting for determining quantitation in solid state 13C NMR spectra of natural organic matter. 2. HF-treated soil fractions. Geoderma 96, 159–171 (2000).

    Article  Google Scholar 

  48. 48.

    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).

    Article  Google Scholar 

  49. 49.

    Bartels, R. H., Beatty, J. C. & Barsky, B. A. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling (Morgan Kaufmann, 1987).

  50. 50.

    Viscarra Rossel, R. A. & Webster, R. Predicting soil properties from the Australian soil visible–near infrared spectroscopic database. Eur. J. Soil Sci. 63, 848–860 (2012).

    Article  Google Scholar 

  51. 51.

    Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).

    Article  Google Scholar 

  52. 52.

    Lin, L. I.-K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255–268 (1989).

    Article  Google Scholar 

  53. 53.

    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article  Google Scholar 

  54. 54.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).

  55. 55.

    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction (Springer, 2009).

  56. 56.

    Zhou, X.-H. & Gao, S. Confidence intervals for the log-normal mean. Stat. Med. 16, 783–790 (1997).

    Article  Google Scholar 

  57. 57.

    Viscarra Rossel, R., Webster, R., Bui, E. & Baldock, J. Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change. Glob. Change Biol. 20, 2953–2970 (2014).

    Article  Google Scholar 

  58. 58.

    Viscarra Rossel, R. A. et al. The Australian three-dimensional soil grid: Australia’s contribution to the GlobalSoilMap project. Soil Res. 53, 845–864 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Australian Government Department of the Environment and Energy for funding work, as part of their progressing improvements of the FULLCAM model and the National Greenhouse Gas Inventory System, which led to the development of this research. We also thank S. Tuomi, P. Leppert, M. Virueda and G. Navarrette for their help with the spectroscopic measurements. We thank SCaRP for the collection of soil samples and their analysis. SCaRP was funded by the Climate Change Research Program of the Australian Department of Agriculture and the Grains Research and Development Corporation. We also thank the NGSA team and Geoscience Australia for the sampling, preparation and provision of the NGSA samples.

Author information

Affiliations

Authors

Contributions

R.A.V.R. conceived the work, and led and performed the data analyses, interpretations and writing, J.L. and T.B. contributed to the data analysis, interpretations and writing, Z.L. contributed to the interpretations and writing, J.B. and A.R. contributed data and to the editing of the first draft.

Corresponding author

Correspondence to R. A. Viscarra Rossel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Description, Supplementary Figs. 1–6 and Tables 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Viscarra Rossel, R.A., Lee, J., Behrens, T. et al. Continental-scale soil carbon composition and vulnerability modulated by regional environmental controls. Nat. Geosci. 12, 547–552 (2019). https://doi.org/10.1038/s41561-019-0373-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing