Article | Published:

Ross Ice Shelf response to climate driven by the tectonic imprint on seafloor bathymetry


Ocean melting has thinned Antarctica’s ice shelves at an increasing rate over the past two decades, leading to loss of grounded ice. The Ross Ice Shelf is currently close to steady state but geological records indicate that it can disintegrate rapidly, which would accelerate grounded ice loss from catchments equivalent to 11.6 m of global sea level rise. Here, we use data from the ROSETTA-Ice airborne survey and ocean simulations to identify the principal threats to Ross Ice Shelf stability. We locate the tectonic boundary between East and West Antarctica from magnetic anomalies and use gravity data to generate a new high-resolution map of sub-ice-shelf bathymetry. The tectonic imprint on the bathymetry constrains sub-ice-shelf ocean circulation, protecting the ice shelf grounding line from moderate changes in global ocean heat content. In contrast, local, seasonal production of warm upper-ocean water near the ice front drives rapid ice shelf melting east of Ross Island, where thinning would lead to faster grounded ice loss from both the East and West Antarctic ice sheets. We confirm high modelled melt rates in this region using ROSETTA-Ice radar data. Our findings highlight the significance of both the tectonic framework and local ocean–atmosphere exchange processes near the ice front in determining the future of the Antarctic Ice Sheet.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The ROSETTA-Ice airborne survey data are available from

Code availability

The code used to generate ocean simulations can be accessed at Modifications to the standard code used and ancillary input data are available on request from

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Nerem, R. et al. Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc. Natl Acad. Sci. USA 115, 2022–2025 (2018).

  2. 2.

    Shepherd, A. et al. Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature 558, 219–222 (2018).

  3. 3.

    Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 12, 521–547 (2018).

  4. 4.

    Dupont, T. K. & Alley, R. B. Assessment of the importance of ice‐shelf buttressing to ice‐sheet flow. Geophys. Res. Lett. 32, L04503 (2005).

  5. 5.

    Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502 (2012).

  6. 6.

    Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

  7. 7.

    Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013).

  8. 8.

    Dalziel, I. & Lawver, L. in The West Antarctic Ice Sheet: Behavior and Environment (eds Alley, R. B. & Bindschadler, R. A.) 29–44 (American Geophysical Union, 2001).

  9. 9.

    Veevers, J. J. Reconstructions before rifting and drifting reveal the geological connections between Antarctica and its conjugates in Gondwanaland. Earth Sci. Rev. 111, 249–318 (2012).

  10. 10.

    Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).

  11. 11.

    Naish, T. et al. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458, 322–328 (2009).

  12. 12.

    Anderson, J. B. et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM. Quat. Sci. Rev. 100, 31–54 (2014).

  13. 13.

    Yokoyama, Y. et al. Widespread collapse of the Ross Ice Shelf during the late Holocene. Proc. Natl Acad. Sci. USA 113, 2354–2359 (2016).

  14. 14.

    Horgan, H. J., Walker, R. T., Anandakrishnan, S. & Alley, R. B. Surface elevation changes at the front of the Ross Ice Shelf: implications for basal melting. J. Geophys. Res. 116, C02005 (2011).

  15. 15.

    Moholdt, G., Padman, L. & Fricker, H. A. Basal mass budget of Ross and Filchner–Ronne ice shelves, Antarctica, derived from Lagrangian analysis of ICESat altimetry. J. Geophys. Res. Earth Surf. 119, 2361–2380 (2014).

  16. 16.

    Kenneally, J. P. & Hughes, T. J. Basal melting along the floating part of Byrd glacier. Antarct. Sci. 16, 355–358 (2004).

  17. 17.

    Stewart, C. L., Christoffersen, P., Nicholls, K. W., Williams, M. J. M., Dowdeswell, J. A. Basal melting of Ross Ice Shelf from solar heat absorption in an ice-front polynya. Nat. Geosci. (2019).

  18. 18.

    MacAyeal, D. R. Thermohaline circulation below the Ross Ice Shelf: a consequence of tidally induced vertical mixing and basal melting. J. Geophys. Res. 89, 597–606 (1984).

  19. 19.

    Dinniman, M. S., Klinck, J. M., Hofmann, E. E. & Smith, W. O.Jr. Effects of projected changes in wind, atmospheric temperature, and freshwater inflow on the Ross Sea. J. Clim. 31, 1619–1635 (2018).

  20. 20.

    Assmann, K., Hellmer, H. & Beckmann, A. Seasonal variation in circulation and water mass distribution on the Ross Sea continental shelf. Antarct. Sci. 15, 3–11 (2003).

  21. 21.

    Siddoway, C. S. in Antarctica: A Keystone in a Changing World (eds Cooper, A. K. et al.) Ch. 9, 91–114 (National Academy of Sciences, 2008).

  22. 22.

    Luyendyk, B. P., Wilson, D. S. & Siddoway, C. S. The eastern margin of the Ross Sea rift in western Marie Byrd Land: crustal structure and tectonic development. Geochem. Geophys. Geosyst. 4, 1090 (2003).

  23. 23.

    Goodge, J. W. & Finn, C. A. Glimpses of East Antarctica: aeromagnetic and satellite magnetic view from the central Transantarctic Mountains of East Aantarctica. J. Geophys. Res. 115, B09103 (2010).

  24. 24.

    Orsi, A. H. & Wiederwohl, C. L. A recount of Ross Sea waters. Deep-Sea Res. II 56, 778–795 (2009).

  25. 25.

    Jendersie, S., Williams, M. J., Langhorne, P. J. & Robertson, R. The density‐driven winter intensification of the Ross Sea circulation. J. Geophys. Res. Oceans 123, 7702– 7724.

  26. 26.

    Smith, W. O. Jr, Sedwick, P. N., Arrigo, K. R., Ainley, D. G. & Orsi, A. H. The Ross Sea in a sea of change. Oceanography 25, 90–103 (2012).

  27. 27.

    Smethie, W. M. Jr & Jacobs, S. S. Circulation and melting under the Ross Ice Shelf: estimates from evolving CFC, salinity and temperature fields in the Ross Sea. Deep-Sea Res. I 52, 959–978 (2005).

  28. 28.

    Stern, A. A., Dinniman, M. S., Zagorodnov, V., Tyler, S. W. & Holland, D. M. Intrusion of warm surface water beneath the McMurdo ice shelf, Antarctica. J. Geophys. Res. Oceans 118, 7036–7048 (2013).

  29. 29.

    Jacobs, S. S. & Giulivi, C. F. Large multidecadal salinity trends near the Pacific–Antarctic continental margin. J. Clim. 23, 4508–4524 (2010).

  30. 30.

    Schneider, D. P. & Reusch, D. B. Antarctic and Southern Ocean surface temperatures in CMIP5 models in the context of the surface energy budget. J. Clim. 29, 1689–1716 (2016).

  31. 31.

    Fürst, J. J. et al. The safety band of Antarctic ice shelves. Nat. Clim. Change 6, 479–482 (2016).

  32. 32.

    Reese, R., Gudmundsson, G. H., Levermann, A. & Winkelmann, R. The far reach of ice-shelf thinning in Antarctica. Nat. Clim. Change. 8, 53–57 (2018).

  33. 33.

    Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343, 174–178 (2014).

  34. 34.

    Spector, P. et al. Rapid early‐Holocene deglaciation in the Ross Sea, Antarctica. Geophys. Res. Lett. 44, 7817–7825 (2017).

  35. 35.

    Kingslake, J. et al. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene. Nature 558, 430–434 (2018).

  36. 36.

    Fretwell, P. et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).

  37. 37.

    Bentley, C. R. & Hayes, D. E. (eds) The Ross Ice Shelf: Glaciology and Geophysics (American Geophysical Union, 1990).

  38. 38.

    Crary, A. P. Glaciological Studies at Little America Station, Antarctica, 1957 and 1958 (American Geographical Society, 1961).

  39. 39.

    Cawood, P. A. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Sci. Rev. 69, 249–279 (2005).

  40. 40.

    Elliot, D. H. The Geological and Tectonic Evolution of the Transantarctic Mountains: A Review (Geological Society, 2013).

  41. 41.

    Jordan, T. et al. Inland extent of the Weddell Sea rift imaged by new aerogeophysical data. Tectonophysics 585, 137–160 (2013).

  42. 42.

    McFadden, R. R., Siddoway, C. S., Teyssier, C. & Fanning, C. M. Cretaceous oblique extensional deformation and magma accumulation in the Fosdick Mountains migmatite-cored gneiss dome, West Antarctica. Tectonics 29, TC4022 (2010).

  43. 43.

    Karner, G. D., Studinger, M. & Bell, R. E. Gravity anomalies of sedimentary basins and their mechanical implications: application to the Ross Sea basins, West Antarctica. Earth Planet. Sci. Lett. 235, 577–596 (2005).

  44. 44.

    Siddoway, C. S., Baldwin, S., Fitzgerald, P. G., Fanning, C. M. & Luyendyk, B. P. Ross Sea mylonites and the timing of intracontinental extension within the West Antarctic rift system. Geology 32, 57–60 (2004).

  45. 45.

    Trey, H. et al. Transect across the West Antarctic rift system in the Ross Sea, Antarctica. Tectonophysics 301, 61–74 (1999).

  46. 46.

    Chaput, J. et al. The crustal thickness of West Antarctica. J. Geophys. Res. Solid Earth 119, 378–395 (2014).

  47. 47.

    Golynsky, A. et al. in Antarctica, Contributions to Global Earth Sciences (eds Fütterer, D. K. et al.) 109–116 (Springer, 2006).

  48. 48.

    Scheinert, M. et al. New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica. Geophys. Res. Lett. 43, 600–610 (2016).

  49. 49.

    Sandwell, D. T., Müller, R. D., Smith, W. H., Garcia, E. & Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346, 65–67 (2014).

  50. 50.

    Clough, J. W. & Hansen, B. L. The Ross Ice Shelf Project. Science 203, 433–434 (1979).

  51. 51.

    Konrad, H. et al. Net retreat of Antarctic glacier grounding lines. Nat. Geosci. 11, 258–262 (2018).

  52. 52.

    Arndt, J. E. et al. The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0—A new bathymetric compilation covering circum-Antarctic waters. Geophys. Res. Lett. 40, 3111–3117 (2013).

  53. 53.

    An, M. et al. S-velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves. J. Geophys. Res. Solid Earth 120, 359–383 (2015).

  54. 54.

    Shen, W. et al. The crust and upper mantle structure of Central and West Antarctica from Bayesian inversion of Rayleigh wave and receiver functions. J. Geophys. Res. Solid Earth 123, 7824–7849 (2018).

  55. 55.

    Tinto, K. J. & Bell, R. E. Progressive unpinning of Thwaites Glacier from newly identified offshore ridge: constraints from aerogravity. Geophys. Res. Lett. 38, L20503 (2011).

  56. 56.

    Cochran, J. R. & Bell, R. E. Inversion of icebridge gravity data for continental shelf bathymetry beneath the Larsen Ice Shelf, Antarctica. J. Glaciol. 58, 540–552 (2012).

  57. 57.

    Muto, A. et al. Subglacial bathymetry and sediment distribution beneath Pine Island Glacier ice shelf modeled using aerogravity and in situ geophysical data: new results. Earth Planet. Sci. Lett. 433, 63–75 (2016).

  58. 58.

    Greenbaum, J. et al. Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nat. Geosci. 8, 294–298 (2015).

  59. 59.

    Millan, R., Rignot, E., Bernier, V., Morlighem, M. & Dutrieux, P. Bathymetry of the Amundsen Sea Embayment sector of West Antarctica from Operation IceBridge gravity and other data. Geophys. Res. Lett. 44, 1360–1368 (2017).

  60. 60.

    Boghosian, A. et al. Resolving bathymetry from airborne gravity along Greenland fjords. J. Geophys. Res. Solid Earth 120, 8516–8533 (2015).

  61. 61.

    An, L. et al. Bed elevation of Jakobshavn Isbræ, West Greenland, from high‐resolution airborne gravity and other data. Geophys. Res. Lett. 44, 3728–3736 (2017).

  62. 62.

    Schaffer, J. et al. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth Syst. Sci. Data 8, 543–557 (2016).

  63. 63.

    Haidvogel, D. B. et al. Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional ocean modeling system. J. Comput. Phys. 227, 3595–3624 (2008).

  64. 64.

    Dinniman, M. S., Klinck, J. M. & Smith, W. O. Influence of sea ice cover and icebergs on circulation and water mass formation in a numerical circulation model of the Ross Sea, Antarctica. J. Geophys. Res. 112, C11013 (2007).

  65. 65.

    Dinniman, M. S., Klinck, J. M. & Smith, W. O. A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep Sea Res. II 58, 1508–1523 (2011).

  66. 66.

    Arzeno, I. B. et al. Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica. J. Geophys. Res. Oceans 119, 4214–4233 (2014).

  67. 67.

    Mueller, R. D. et al. Impact of tide-topography interactions on basal melting of Larsen C Ice Shelf, Antarctica. J. Geophys. Res. 117, C05005 (2012).

  68. 68.

    Bromwich, D. H., Monaghan, A. J., Manning, K. W. & Powers, J. G. Real-time forecasting for the Antarctic: an evaluation of the Antarctic Mesoscale Prediction System (AMPS). Mon. Weather Rev. 133, 579–603 (2005).

  69. 69.

    Rossow, W. B. & Schiffer, R. A. Advances in understanding clouds from ISCCP. Bull. Am. Meteor. Soc. 80, 2261–2287 (1999).

  70. 70.

    Budgell, W. P. Numerical simulation of ice-ocean variability in the Barents Sea region. Ocean Dyn. 55, 370–387 (2005).

  71. 71.

    Holland, D. M. & Jenkins, A. Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 29, 1787–1800 (1999).

  72. 72.

    Webb, D. J, de Cuevas, B. A. & Coward, A. C. The First Main Run of the OCCAM Global Ocean Model (Southampton Oceanography Centre, 1998).

  73. 73.

    Catania, G., Hulbe, C. & Conway, H. Grounding-line basal melt rates determined using radar-derived internal stratigraphy. J. Glaciol. 56, 545–554 (2010).

  74. 74.

    Jacobel, R. W., Scambos, T. A., Raymond, C. F. & Gades, A. M. Changes in the configuration of ice stream flow from the West Antarctic Ice Sheet. J. Geophys. Res. Solid Earth 101, 5499–5504 (1996).

  75. 75.

    Jacobel, R. W., Gades, A. M., Gottschling, D. L., Hodge, S. M. & Wright, D. L. Interpretation of radar-detected internal layer folding in West Antarctic ice streams. J. Glaciol. 39, 528–537 (1993).

  76. 76.

    Wright, D. L., Hodge, S. M., Bradley, J. A., Grover, T. P. & Jacobel, R. W. Instruments and methods: a digital low-frequency, surface-profiling ice-radar system. J. Glaciol. 36, 112–121 (1990).

Download references


We gratefully acknowledge the support of the 109th Airlift Wing of the New York Air National Guard. We thank the United States Antarctic Program and staff of McMurdo Station seasons 2014–2018 and J. DeTemple during the development of the IcePod. This work was supported by the National Science Foundation 0958658, 1443534, 1443498, 1443677, 1443497 and 1341688, NASA NNX16AJ65G, the Moore Foundation, the Old York Foundation, the New Zealand Ministry of Business Innovation and Employment contract C05X1001, and New Zealand Antarctic Research Institute (NZARI no. 2014-11) funded Aotearoa New Zealand Ross Ice Shelf Programme (F.C.T. and G.O’B.). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the United States Government.

Author information

K.J.T., R.E.B., L.P., C.S.S., S.R.S., H.A.F., I.D. and F.C.T. conceived the experiment and analysed the data; D.F.P. contributed to oceanography; M.R.S. and C.M. contributed to glaciology; S.L.H. contributed to developing and running the ocean model simulations; N.P.F., C.B., T.D., W.C. and L.D. developed the IcePod instrument suite and acquired the data; S.K. analysed radar data; M.T. contributed to the bathymetry model; M.K.B., A.B., N.B., B.L.B., S.I.C., C.D.G., C.L., A.L., G.O’B., J.J.S., S.E.S. and M.G.W. acquired and processed data in the field.

Competing interests

N.B. is director of operations of Dynamic Gravity Systems, provider of one of the gravity instruments used in the ROSETTA-Ice surveys. The remaining authors declare no competing interests.

Correspondence to K. J. Tinto.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6.

Supplementary Video 1

Temporal evolution of High-Salinity Shelf Water.

Supplementary Video 2

Temporal evolution of modified Circumpolar Deep Water.

Supplementary Video 3

Temporal evolution of Antarctic Surface Water.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: The Ross Ice Shelf within the Ross Embayment.
Fig. 2: Ross Ice Shelf tectonic setting.
Fig. 3: ROSETTA-Ice survey potential field results.
Fig. 4: Ross Ice Shelf bathymetry, ocean temperatures and basal melt.
Fig. 5: A schematic of processes controlling the Ross Ice Shelf.
Fig. 6: A schematic comparing wintertime interactions between Ross Ice Shelf katabatic winds, local (HSSW) and global (CDW) major water masses during modern and glacial times.