Periodic changes in the Cretaceous ocean and climate caused by marine redox see-saw

Abstract

Periodic changes in sediment composition are usually ascribed to insolation forcing controlled by Earth’s orbital parameters. During the Cretaceous Thermal Maximum at 97–91 Myr ago (Ma), a 37–50-kyr-long cycle that is generally believed to reflect obliquity forcing dominates the sediment record. Here, we use a numerical ocean model to show that a cycle of this length can be generated by marine biogeochemical processes without applying orbital forcing. According to our model, the restricted proto-North Atlantic and Tethys basins were poorly ventilated and oscillated between iron-rich and sulfidic (euxinic) states. The Panthalassa Basin was fertilized by dissolved iron originating from the proto-North Atlantic. Hence, it was less oxygenated while the proto-North Atlantic was in an iron-rich state and better oxygenated during euxinic periods in the proto-North Atlantic. This redox see-saw was strong enough to create significant changes in atmospheric \(p_{\mathrm {CO}_2}\). We conclude that most of the variability in the mid-Cretaceous ocean–atmosphere system can be ascribed to the internal redox see-saw and its response to external orbital forcing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Response of the REDBIO model to changes in the riverine P flux.
Fig. 2: REDBIO results for constant \(p_{\mathrm {CO}_2}\) (500 ppmv) and riverine P flux (116 Gmol yr1).
Fig. 3: The redox see-saw in the mid-Cretaceous ocean.
Fig. 4: REDBIO results for dynamic pCO2 and riverine P flux.
Fig. 5: Spectral analysis of model results.

Data availability

The authors declare that the data supporting the findings of this study are available within the Article and its Supplementary Information.

Code availability

The UVic model and the REDBIO box model (written in MATHEMATICA) are available from S.F. (sfloegel@geomar.de) and K.W., respectively.

References

  1. 1.

    Friedrich, O., Norris, R. D. & Erbacher, J. Evolution of middle to Late Cretaceous oceans—a 55 m.y. record of Earth’s temperature and carbon cycle. Geology 40, 107–110 (2012).

    Article  Google Scholar 

  2. 2.

    O’Brien, C. L. et al. Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth Sci. Rev. 172, 224–247 (2017).

    Article  Google Scholar 

  3. 3.

    Meyers, S. R., Sageman, B. B. & Arthur, M. A. Obliquity forcing of organic matter accumulation during Oceanic Anoxic Event 2. Paleoceanography 27, PA3212 (2012).

    Google Scholar 

  4. 4.

    Kolonic, S. et al. Black shale deposition on the northwest African Shelf during the Cenomanian/Turonian oceanic anoxic event: climate coupling and global organic carbon burial. Paleoceanography 20, PA1006 (2005).

    Article  Google Scholar 

  5. 5.

    Kuhnt, W., Luderer, F., Nederbragt, S., Thurow, J. & Wagner, T. Orbital-scale record of the late Cenomanian–Turonian oceanic anoxic event (OAE-2) in the Tarfaya Basin (Morocco). Int. J. Earth. Sci. 94, 147–159 (2005).

    Article  Google Scholar 

  6. 6.

    Kuhnt, W. et al. Unraveling the onset of Cretaceous Oceanic Anoxic Event 2 in an extended sediment archive from the Tarfaya-Laayoune Basin, Morocco. Paleoceanography 32, 923–946 (2017).

    Article  Google Scholar 

  7. 7.

    Sageman, B. B., Rich, J., Arthur, M. A., Birchfield, G. E. & Dean, W. E. Evidence for Milankovitch periodicities in Cenomanian–Turonian lithologic and geochemical cycles, western interior USA. J. Sediment. Res. 67, 286–302 (1997).

    Google Scholar 

  8. 8.

    Eldrett, J. S. et al. Origin of limestone-marlstone cycles: astronomic forcing of organic-rich sedimentary rocks from the Cenomanian to early Coniacian of the Cretaceous Western Interior Seaway, USA. Earth Planet. Sci. Lett. 423, 98–113 (2015).

    Article  Google Scholar 

  9. 9.

    Bosmans, J. H. C., Hilgen, F. J., Tuenter, E. & Lourens, L. J. Obliquity forcing of low-latitude climate. Clim. Past 11, 1335–1346 (2015).

    Article  Google Scholar 

  10. 10.

    Kuhnt, W., Nederbragt, A. & Leine, L. Cyclicity of Cenomanian-Turonian organic-carbon-rich sediments in the Tarfaya Atlantic Coastal Basin (Morocco). Cretaceous Res. 18, 587–601 (1997).

    Article  Google Scholar 

  11. 11.

    Wagner, T., Hofmann, P. & Flögel, S. Marine black shale deposition and Hadley Cell dynamics: a conceptual framework for the Cretaceous Atlantic Ocean. Mar. Petrol. Geol. 43, 222–238 (2013).

    Article  Google Scholar 

  12. 12.

    Poulton, S. W. et al. A continental-weathering control on orbitally driven redox-nutrient cycling during Cretaceous Oceanic Anoxic Event 2. Geology 43, 963–966 (2015).

    Article  Google Scholar 

  13. 13.

    Flögel, S., Wallmann, K. & Kuhnt, W. Cool episodes in the Cretaceous—exploring the effects of physical forcings on Antarctic snow accumulation. Earth Planet. Sci. Lett. 307, 279–288 (2011).

    Article  Google Scholar 

  14. 14.

    Laurin, J., Meyers, S. R., Ulicny, D., Jarvis, I. & Sageman, B. B. Axial obliquity control on the greenhouse carbon budget through middle- to high-latitude reservoirs. Paleoceanography 30, 133–149 (2015).

    Article  Google Scholar 

  15. 15.

    Bohlen, L., Dale, A. & Wallmann, K. Simple transfer functions for calculating benthic fixed nitrogen losses and C:N:P regeneration ratios in global biogeochemical models. Glob. Biogeochem. Cycles 26, GB3029 (2012).

    Article  Google Scholar 

  16. 16.

    Van Cappellen, P. & Ingall, E. D. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9, 677–692 (1994).

    Article  Google Scholar 

  17. 17.

    Wallmann, K. Phosphorus imbalance in the global ocean? Glob. Biogeochem. Cycles 24, GB4030 (2010).

    Article  Google Scholar 

  18. 18.

    Dale, A. W. et al. A revised global estimate of dissolved iron fluxes from marine sediments. Glob. Biogeochem. Cycles 29, 691–707 (2015).

    Article  Google Scholar 

  19. 19.

    Raiswell, R. & Canfield, D. E. The iron biogeochemical cycle past and present. Geochem. Perspect. 1, 1–220 (2012).

    Article  Google Scholar 

  20. 20.

    Scholz, F., McManus, J., Mix, A. C., Hensen, C. & Schneider, R. R. The impact of ocean deoxygenation on iron release from continental margin sediments. Nat. Geosci. 7, 433–437 (2014).

    Article  Google Scholar 

  21. 21.

    Monteiro, F. M., Pancost, R. D., Ridgwell, A. & Donnadieu, Y. Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): model-data comparison. Paleoceanography 27, PA4209 (2012).

    Article  Google Scholar 

  22. 22.

    Ruvalcaba Baroni, I., Topper, R. P. M., van Helmond, N., Brinkhuis, H. & Slomp, C. P. Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input. Biogeosciences 11, 977–993 (2014).

    Article  Google Scholar 

  23. 23.

    Beil, S. et al. New insights into Cenomanian paleoceanography and climate evolution from the Tarfaya Basin, southern Morocco. Cretaceous Res. 84, 451–473 (2018).

    Article  Google Scholar 

  24. 24.

    Ruttenberg, K. C. Reassessment of the oceanic residence time of phosphorus. Chem. Geol. 107, 405–409 (1993).

    Article  Google Scholar 

  25. 25.

    Flögel, S. et al. Simulating the biogeochemical effects of volcanic CO2 degassing on the oxygen-state of the deep ocean during the Cenomanian/Turonian Anoxic Event (OAE2). Earth Planet. Sci. Lett. 305, 371–384 (2011).

    Article  Google Scholar 

  26. 26.

    Meyer, K. M. & Kump, L. R. Oceanic euxinia in Earth history: causes and consequences. Annu. Rev. Earth Planet. Sci. 36, 251–288 (2008).

    Article  Google Scholar 

  27. 27.

    Kuypers, M. M. M., van Breugel, Y., Schouten, S., Erba, E. & Damste, J. S. S. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology 32, 853–856 (2004).

    Article  Google Scholar 

  28. 28.

    Lenton, T. M. & Daines, S. J. The effects of marine eukaryote evolution on phosphorus, carbon and oxygen cycling across the Proterozoic–Phanerozoic transition. Emerg. Topics Life Sci. 2, 267–278 (2018).

    Article  Google Scholar 

  29. 29.

    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    Article  Google Scholar 

  30. 30.

    März, C. et al. Redox sensitivity of P cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochim. Cosmochim. Acta 72, 3703–3717 (2008).

    Article  Google Scholar 

  31. 31.

    Clarkson, M. O. et al. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. Nat. Commun. 7, 12236 (2016).

    Article  Google Scholar 

  32. 32.

    Dickson, A. J. et al. The spread of marine anoxia on the northern Tethys margin during the Paleocene-Eocene Thermal Maximum. Paleoceanography 29, 471–488 (2014).

    Article  Google Scholar 

  33. 33.

    Lenton, T. M. & Daines, S. J. Biogeochemical transformations in the history of the ocean. Annu. Rev. Mar. Sci. 9, 31–58 (2017).

    Article  Google Scholar 

  34. 34.

    Dellwig, O. et al. A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins. Geochim. Cosmochim. Acta 74, 7100–7115 (2010).

    Article  Google Scholar 

  35. 35.

    Scholz, F. et al. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions. Earth Planet. Sci. Lett. 454, 272–281 (2016).

    Article  Google Scholar 

  36. 36.

    Scholz, F. Identifying oxygen minimum zone-type biogeochemical cycling in Earth history using inorganic geochemical proxies. Earth Sci. Rev. 184, 29–45 (2018).

    Article  Google Scholar 

  37. 37.

    Tsandev, I. & Slomp, C. P. Modeling phosphorous cycling and carbon burial during Cretacious Oceanic Anoxic Events. Earth Planet. Sci. Lett. 286, 71–79 (2009).

    Article  Google Scholar 

  38. 38.

    Kuypers, M. M. M. et al. Orbital forcing of organic carbon burial in the proto-North Atlantic during oceanic anoxic event 2. Earth Planet. Sci. Lett. 228, 465–482 (2004).

    Article  Google Scholar 

  39. 39.

    Laskar, J., Fienga, A., Gastineau, M. & Manche, H. La2010: a new orbital solution for the long-term motion of the Earth. Astron. Astrophys. 532, A89 (2011).

    Article  Google Scholar 

  40. 40.

    Berger, A., Loutre, M. F. & Laskar, J. Stability of the astronomical frequencies over the Earth’s history for paleoclimate studies. Science 255, 560–566 (1992).

    Article  Google Scholar 

  41. 41.

    Handoh, I. C. & Lenton, T. M. Periodic mid-Cretaceous oceanic anoxic events linked by oscillations of the phosphorus and oxygen biogeochemical cycles. Glob. Biogeochem. Cycles 17, 1092 (2003).

    Article  Google Scholar 

  42. 42.

    Saltzman, B. & Maasch, D. K. Carbon cycle instability as a cause of the late Pleistocene ice age oscillations: modeling the asymmetric response. Glob. Biogeochem. Cycles 2, 177–185 (1988).

    Article  Google Scholar 

  43. 43.

    Wallmann, K. Is late Quaternary climate change governed by self-sustained oscillations in atmospheric CO2? Geochim. Cosmochim. Acta 132, 413–439 (2014).

    Article  Google Scholar 

  44. 44.

    Keller, D. P., Oschlies, A. & Eby, M. A new marine ecosystem model for the University of Victoria Earth System Climate Model. Geosci. Model Dev. 5, 1195–1220 (2012).

    Article  Google Scholar 

  45. 45.

    Archer, D. A data-driven model of the global calcite lysocline. Glob. Biogeochem. Cycles 10, 511–526 (1996).

    Article  Google Scholar 

  46. 46.

    Weaver, A. J. et al. The UVic Earth System Climate Model: model description, climatology, and applications to past, present and future climates. Atmos. Ocean 39, 361–428 (2001).

    Article  Google Scholar 

  47. 47.

    Flögel, S., Hay, W. W., DeConto, R. M. & Balukhovsk, A. N. Formation of sedimentary bedding couplets in the Western Interior Seaway of North America—implications from climate system modeling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 218, 125–143 (2005).

    Article  Google Scholar 

  48. 48.

    Meissner, K. J., McNeil, B. I., Eby, M. & Wiebe, E. C. The importance of the terrestrial weathering feedback for multimillennial coral reef habitat recovery. Glob. Biogeochem. Cycles 26, GB3017 (2012).

    Article  Google Scholar 

  49. 49.

    Berner, R. A. & Kothavala, Z. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001).

    Article  Google Scholar 

  50. 50.

    Royer, D. L., Donnadieu, Y., Park, J., Kowalczyk, J. & Godderis, Y. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am. J. Sci. 314, 1259–1283 (2014).

    Article  Google Scholar 

  51. 51.

    Wallmann, K., Schneider, B. & Sarnthein, M. Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric pCO2 and seawater composition over the last 130,000 years. Clim. Past 12, 339–375 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the German Research Foundation via Collaborative Research Center 754 (Climate–Biogeochemistry Interactions in the Tropical Ocean, SFB 754) and the Emmy Noether Program (independent junior research group ICONOX). Further support was provided by the Helmholtz Association via the ESM project.

Author information

Affiliations

Authors

Contributions

K.W. designed REDBIO and wrote the manuscript. S.F., S.S. and T.P.K. set up the UVic Earth System Model with the mid-Cretaceous continent configuration. F.S. contributed to the discussion of biogeochemical cycling in anoxic oceans. A.W.D supported the development of REDBIO. W.K. helped in the interpretation of the mid-Cretaceous geological record and the spectral analysis of model results.

Corresponding author

Correspondence to Klaus Wallmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussions, figures and tables.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wallmann, K., Flögel, S., Scholz, F. et al. Periodic changes in the Cretaceous ocean and climate caused by marine redox see-saw. Nat. Geosci. 12, 456–461 (2019). https://doi.org/10.1038/s41561-019-0359-x

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing