Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries

Abstract

El Niño events differ substantially in their spatial pattern and intensity. Canonical Eastern Pacific El Niño events have sea surface temperature anomalies that are strongest in the far eastern equatorial Pacific, whereas peak ocean warming occurs further west during Central Pacific El Niño events. The event types differ in their impacts on the location and intensity of temperature and precipitation anomalies globally. Evidence is emerging that Central Pacific El Niño events have become more common, a trend that is projected by some studies to continue with ongoing climate change. Here we identify spatial and temporal patterns in observed sea surface temperatures that distinguish the evolution of Eastern and Central Pacific El Niño events in the tropical Pacific. We show that these patterns are recorded by a network of 27 seasonally resolved coral records, which we then use to reconstruct Central and Eastern Pacific El Niño activity for the past four centuries. We find a simultaneous increase in Central Pacific events and a decrease in Eastern Pacific events since the late twentieth century that leads to a ratio of Central to Eastern Pacific events that is unusual in a multicentury context. Compared to the past four centuries, the most recent 30 year period includes fewer, but more intense, Eastern Pacific El Niño events.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: El Niño diversity in instrumental and coral data for EP El Niño (left column) and CP El Niño (right column).
Fig. 2: Seasonal distinction of EP and CP El Niño events.
Fig. 3: Reconstruction of seasonal El Niño indices.
Fig. 4: El Niño event diversity over the past four centuries.

Data availability

The proxy records with persistent identifier (doi/URL) are listed in Supplementary Table 4. Primary input data are archived by the National Oceanic and Atmospheric Administration (NOAA). Reconstructions are archived at https://www.ncdc.noaa.gov/paleo/study/26270. Additional information and datasets are available at: https://figshare.com/s/0cc010d38b66eb3e7975.

Code availability

The code associated with this paper is available on request from M.B.F.

References

  1. 1.

    Rasmusson, E. M. & Carpenter, T. H. Variation in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Weather Rev. 110, 354–384 (1982).

    Article  Google Scholar 

  2. 2.

    Kug, J.-S., Jin, F.-F. & An, S.-I. Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J. Climate 22, 1499–1515 (2009).

    Article  Google Scholar 

  3. 3.

    Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, C11007 (2007).

    Article  Google Scholar 

  4. 4.

    Larkin, N. K. & Harrison, D. E. Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett. 32, L16705 (2005).

    Article  Google Scholar 

  5. 5.

    Di Lorenzo, E. et al. Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat. Geosci. 3, 762–765 (2010).

    Article  Google Scholar 

  6. 6.

    Yu, J.-Y., Kao, H.-Y., Lee, T. & Kim, S. T. Subsurface ocean temperature indices for Central-Pacific and Eastern-Pacific types of El Niño and La Niña events. Theor. Appl. Climatol. 103, 337–344 (2010).

    Article  Google Scholar 

  7. 7.

    Graf, H.-F. & Zanchettin, D. Central Pacific El Niño, the ‘subtropical bridge’ and Eurasian climate. J. Geophys. Res. 117, D01102 (2012).

    Article  Google Scholar 

  8. 8.

    Wang, G. & Hendon, H. H. Sensitivity of Australian rainfall to inter-El Niño variations. J. Climate 20, 4211–4226 (2007).

    Article  Google Scholar 

  9. 9.

    Taschetto, A. S. & England, M. H. El Niño Modoki impacts on Australian rainfall. J. Climate 22, 3167–3174 (2009).

    Article  Google Scholar 

  10. 10.

    Cai, W. & Cowan, T. La Niña Modoki impacts Australia autumn rainfall variability. Geophys. Res. Lett. 36, L12805 (2009).

    Article  Google Scholar 

  11. 11.

    Frauen, C., Dommenget, D., Tyrrell, N., Rezny, M. & Wales, S. Analysis of the nonlinearity of El Niño–Southern Oscillation teleconnections. J. Climate 27, 6225–6244 (2014).

    Article  Google Scholar 

  12. 12.

    Fedorov, A. V. & Philander, S. G. Is El Niño changing? Science 288, 1997–2001 (2000).

    Article  Google Scholar 

  13. 13.

    Ren, H.-L., Jin, F.-F., Stuecker, M. F. & Xie, R. ENSO regime change since the late 1970s as manifested by two types of ENSO. J. Meteorol. Soc. Jpn II 91, 835–842 (2013).

    Article  Google Scholar 

  14. 14.

    An, S. I. & Wang, B. Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate 13, 2044–2055 (2000).

    Article  Google Scholar 

  15. 15.

    Aiken, C. M., Santoso, A., McGregor, S. & England, M. H. Optimal forcing of ENSO either side of the 1970s climate shift and its implications for predictability. Clim. Dynam. 45, 1–19 (2015).

    Article  Google Scholar 

  16. 16.

    Trenberth, K. E. & Stepaniak, D. P. Indices of El Niño evolution. J. Climate 14, 1697–1701 (2001).

    Article  Google Scholar 

  17. 17.

    Ren, H.-L. & Jin, F.-F. Niño indices for two types of ENSO. Geophys. Res. Lett. 38, L04704 (2011).

    Article  Google Scholar 

  18. 18.

    Henley, B. J. et al. A tripole index for the Interdecadal Pacific Oscillation. Clim. Dynam. 45, 1–14 (2015).

    Article  Google Scholar 

  19. 19.

    L’Heureux, M. L. Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Clim. Change 3, 571–576 (2013).

    Article  Google Scholar 

  20. 20.

    England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  21. 21.

    Lee, T. & McPhaden, M. J. Increasing intensity of El Niño in the central–equatorial Pacific. Geophys. Res. Lett. 37, L14603 (2010).

    Google Scholar 

  22. 22.

    Yeh, S.-W. et al. El Niño in a changing climate. Nature 461, 511–514 (2009).

    Article  Google Scholar 

  23. 23.

    McPhaden, M. J. & Zhang, X. Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys. Res. Lett. 36, L13703 (2009).

    Article  Google Scholar 

  24. 24.

    Wang, B. Interdecadal changes in El Niño onset in the last four decades. J. Climate 8, 267–285 (1995).

    Article  Google Scholar 

  25. 25.

    Newman, M., Shin, S.-I. & Alexander, M. A. Natural variation in ENSO flavors. Geophys. Res. Lett. 38, L14705 (2011).

    Article  Google Scholar 

  26. 26.

    Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96, 921–938 (2015).

    Article  Google Scholar 

  27. 27.

    Weber, J. N. & Woodhead, P. M. Temperature dependence of oxygen-18 concentration in reef coral carbonates. J. Geophys. Res. 77, 463–473 (1972).

    Article  Google Scholar 

  28. 28.

    Grottoli, A. G. & Eakin, C. M. A review of modern coral δ18O and Δ14C proxy records. Earth Sci. Rev. 81, 67–91 (2007).

    Article  Google Scholar 

  29. 29.

    Torrence, C. & Webster, P. J. The annual cycle of persistence in the El Niño Southern Oscillation. Q. J. R. Meteorol. Soc. 124, 1985–2004 (1998).

    Google Scholar 

  30. 30.

    Liu, Y. et al. Recent enhancement of Central Pacific El Niño variability relative to last eight centuries. Nat. Commun. 8, 15386 (2017).

    Article  Google Scholar 

  31. 31.

    McPhaden, M. J. Playing hide and seek with El Niño. Nat. Clim. Change 5, 791–795 (2015).

    Article  Google Scholar 

  32. 32.

    Menkes, C. E. et al. About the role of westerly wind events in the possible development of an El Niño in 2014. Geophys. Res. Lett. 41, 6476–6483 (2014).

    Article  Google Scholar 

  33. 33.

    Chen, D. et al. Strong influence of westerly wind bursts on El Niño diversity. Nature Geoscience 8, 1–8 (2015).

    Article  Google Scholar 

  34. 34.

    Kao, H.-Y. & Yu, J.-Y. Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Climate 22, 615–632 (2009).

    Article  Google Scholar 

  35. 35.

    Kim, S. T. & Yu, J.-Y. The two types of ENSO in CMIP5 models. Geophys. Res. Lett. 39, L11704 (2012).

    Google Scholar 

  36. 36.

    Yu, Y., Dommenget, D., Frauen, C., Wang, G. & Wales, S. ENSO dynamics and diversity resulting from the recharge oscillator interacting with the slab ocean. Clim. Dynam. 46, 1665–1682 (2015).

    Article  Google Scholar 

  37. 37.

    Liu, Z. Y., Vavrus, S., He, F., Wen, N. & Zhong, Y. F. Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J. Climate 18, 4684–4700 (2005).

    Article  Google Scholar 

  38. 38.

    Latif, M. et al. ENSIP: the El Niño simulation intercomparison project. Clim. Dynam. 18, 255–276 (2001).

    Article  Google Scholar 

  39. 39.

    Chen, C., Cane, M. A., Wittenberg, A. T. & Chen, D. ENSO in the CMIP5 simulations: life cycles, diversity, and responses to climate change. J. Climate 30, 775–801 (2017).

    Article  Google Scholar 

  40. 40.

    Rayner, N. A., Parker, D. E. & Horton, E. B. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  41. 41.

    Tierney, J. E. et al. Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography 30, 226–252 (2015).

    Article  Google Scholar 

  42. 42.

    Emile-Geay, J., Cobb, K. M., Mann, M. E. & Wittenberg, A. T. Estimating central equatorial Pacific SST variability over the past millennium. Part II: reconstructions and implications. J. Climate 26, 2329–2352 (2013).

    Article  Google Scholar 

  43. 43.

    Li, J. et al. Interdecadal modulation of El Niño amplitude during the past millennium. Nat. Clim. Change 1, 114–118 (2011).

    Article  Google Scholar 

  44. 44.

    Emile-Geay, J. & Tingley, M. P. Inferring climate variability from nonlinear proxies: application to paleo-ENSO studies. Clim. Past. 11, 2763–2809 (2015).

    Article  Google Scholar 

  45. 45.

    Schneider, T. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J. Climate 14, 853–871 (2001).

    Article  Google Scholar 

  46. 46.

    Mathys, C. A Bayesian foundation for individual learning under uncertainty. Front. Hum. Neurosci. 5, 39 (2011).

    Article  Google Scholar 

  47. 47.

    Bishop, C. Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer, New York, 2007).

  48. 48.

    Daunizeau, J., Friston, K. J. & Kiebel, S. J. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica D 238, 2089–2118 (2009).

    Article  Google Scholar 

  49. 49.

    Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112, 859–877 (2017).

    Article  Google Scholar 

  50. 50.

    Cook, E. R., Meko, D. M., Stahle, D. W. & Cleaveland, M. K. Drought reconstructions for the continental United States. J. Climate 12, 1145–1162 (1999).

    Article  Google Scholar 

  51. 51.

    Krzywinski, M. & Altman, N. Classification and regression trees. Nat. Methods 14, 757–758 (2017).

    Article  Google Scholar 

  52. 52.

    Yeh, S.-W., Wang, X., Wang, C. & Dewitte, B. On the relationship between the North Pacific climate variability and the Central Pacific El Niño. J. Climate 28, 663–677 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

M.B.F., B.J.H, D.J.K. and D.D. were supported by the Australian Research Council (ARC) Centre of Excellence for Climate System Science (CE110001028). B.J.H. is supported through an ARC Linkage Project (LP150100062). B.J.H, N.J.A. and D.D. are supported by the ARC Centre of Excellence for Climate Extremes (CE170100023). H.V.M. acknowledges support from ARC Future Fellowship (FT140100286). N.J.A. acknowledges support from ARC Future Fellowship (FT160100029). D.J.K. is supported by the Earth Systems and Climate Change Hub in the Australian Government’s National Environmental Science Program.

Author information

Affiliations

Authors

Contributions

M.B.F. conceived and designed the study, with input from B.J.H. and D.J.K. M.B.F. led the development of the methods, the analysis and the writing of the manuscript. Expert contributions and oversight came from B.J.H., D.J.K., H.V.M., N.J.A. and D.D. All the authors contributed to discussions that shaped the study and the manuscript.

Corresponding author

Correspondence to Mandy B. Freund.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, figures and tables.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Freund, M.B., Henley, B.J., Karoly, D.J. et al. Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nat. Geosci. 12, 450–455 (2019). https://doi.org/10.1038/s41561-019-0353-3

Download citation

Further reading