An isotopically depleted lower mantle component is intrinsic to the Hawaiian mantle plume

Abstract

Most ocean island basalts sample an isotopically depleted mantle component, but the origin of this component is unclear. It may come from either the entrained upper mantle or from a reservoir intrinsic to the plume, sourced from the lower mantle. For Hawaii, the isotopically depleted component is primarily sampled during the secondary rejuvenated-stage volcanism, 0.5–2 million years after the initial shield-stage volcanism. However, it is also inferred in shield and post-shield lavas. We analyse the radiogenic isotopic and trace element compositions of a suite of Mauna Kea shield-stage tholeiites, and found that they have the same isotopic compositions as rejuvenated-stage lavas. We use trace element models to show that these shield-stage basalts can be explained as higher degree partial melts of a rejuvenated-stage source. Our data, therefore, show that the depleted rejuvenated-stage component was directly sampled during shield-stage volcanism. The common source for both shield-stage and secondary rejuvenated volcanism implies that the depleted rejuvenated component is intrinsic to the Hawaiian mantle plume. It is further inferred that the mantle region from which the Hawaiian plume originates, probably in the lower mantle, is also isotopically depleted, similar but not identical to the upper mantle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Map of the Hawaiian Islands and the Hawaiian Arch.
Fig. 2: HSDP depth profiles.
Fig. 3: Radiogenic isotope data of Mauna Kea high-CaO basalts relative to shield-stage basalts of both Hawaiian Kea and Loa-trend volcanoes, rejuvenated-stage basalts and Pacific MORBs.
Fig. 4: High-precision Pb isotope data for Hawaiian rejuvenated-stage lavas.
Fig. 5: Trace element patterns and models.

Data availability

The authors declare that all the data supporting the findings of this study are available within the article and its Supplementary Information.

References

  1. 1.

    Hofmann, A. W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988).

    Google Scholar 

  2. 2.

    Kurz, M. D., Curtice, J., Lott, D. E. & Solow, A. Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaiian Scientific Drilling Project. Geochem. Geophys. Geosys. 5, Q04G14 (2004).

    Google Scholar 

  3. 3.

    DePaolo, D. J. & Wasserburg, G. J. Nd isotopic variations and petrogenetic models. Geophys. Res. Lett. 3, 249–252 (1976).

    Google Scholar 

  4. 4.

    Stracke, A. Earth’s heterogeneous mantle: a product of convection-driven interaction between crust and mantle. Chem. Geol. 330–331, 274–299 (2012).

    Google Scholar 

  5. 5.

    Chen, C. Y. & Frey, F. A. Trace element and isotopic geochemistry of lavas from Haleakala volcano, East Maui, Hawaii: implications for the origin of Hawaiian basalts. J. Geophys. Res. 90, 8743–8768 (1985).

    Google Scholar 

  6. 6.

    Keller, R. A., Fisk, M. R. & White, W. M. Isotopic evidence for late Cretaceous plume–ridge interaction at the Hawaiian hotspot. Nature 405, 673–676 (2000).

    Google Scholar 

  7. 7.

    Lassiter, J. C., Hauri, E. H., Reiners, P. W. & Garcia, M. O. Generation of Hawaiian post-erosional lavas by melting of a mixed lherzolite/pyroxenite source. Earth Planet. Sci. Lett. 178, 269–284 (2000).

    Google Scholar 

  8. 8.

    Regelous, M., Hofmann, A. W., Abouchami, W. & Galer, S. J. G. Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J. Petrol. 44, 113–140 (2003).

    Google Scholar 

  9. 9.

    Yang, H. J., Frey, F. A. & Clague, D. A. Constraints on the source components of lavas forming the Hawaiian North Arch and Honolulu Volcanics. J. Petrol. 44, 603–627 (2003).

    Google Scholar 

  10. 10.

    Frey, F. A., Huang, S., Blichert-Toft, J., Regelous, M. & Boyet, M. Origin of depleted components in basalt related to the Hawaiian hot spot: evidence from isotopic and incompatible element ratios. Geochem. Geophys. Geosys. 6, Q02L07 (2005).

    Google Scholar 

  11. 11.

    Bizimis, M., Salters, V. J. M., Garcia, M. O. & Norman, M. D. The composition and distribution of the rejuvenated component across the Hawaiian plume: Hf–Nd–Sr–Pb isotope systematics of Kaula lavas and pyroxenite xenoliths. Geochem. Geophys. Geosys. 14, 4458–4478 (2013).

    Google Scholar 

  12. 12.

    Dixon, J., Clague, D. A., Cousens, B., Monsalve, M. L. & Uhl, J. Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii. Geochem. Geophys. Geosys. 9, Q09005 (2008).

    Google Scholar 

  13. 13.

    Mukhopadhyay, S., Lassiter, J. C., Farley, K. A. & Bogue, S. W. Geochemistry of Kauai shield-stage lavas: implications for the chemical evolution of the Hawaiian plume. Geochem. Geophys. Geosys. 4, 1009 (2003).

    Google Scholar 

  14. 14.

    Chauvel, C. & Hémond, C. Melting of a complete section of recycled oceanic crust: trace element and Pb isotopic evidence from Iceland. Geochem. Geophys. Geosys. 1, 1001 (2000).

    Google Scholar 

  15. 15.

    Fitton, J., Saunders, A., Norry, M., Hardarson, B. & Taylor, R. Thermal and chemical structure of the Iceland plume. Earth Planet. Sci. Lett. 153, 197–208 (1997).

    Google Scholar 

  16. 16.

    Fitton, J. G., Saunders, A. D., Kempton, P. D. & Hardarson, B. S. Does depleted mantle form an intrinsic part of the Iceland plume? Geochem. Geophys. Geosys. 4, 1032 (2003).

    Google Scholar 

  17. 17.

    Storey, M. et al. Geochemical evidence for plume–mantle interactions beneath Kerguelen and Heard Islands, Indian Ocean. Nature 336, 371–374 (1988).

    Google Scholar 

  18. 18.

    Frey, F. A. et al. Depleted components in the source of hotspot magmas: evidence from the Ninetyeast Ridge (Kerguelen). Earth Planet. Sci. Lett. 426, 293–304 (2015).

    Google Scholar 

  19. 19.

    Jackson, M. G. et al. Helium and lead isotopes reveal the geochemical geometry of the Samoan plume. Nature 514, 355–358 (2014).

    Google Scholar 

  20. 20.

    Konter, J. G. & Jackson, M. G. Large volumes of rejuvenated volcanism in Samoa: evidence supporting a tectonic influence on late-stage volcanism. Geochem. Geophys. Geosys. 13, Q0AM04 (2012).

    Google Scholar 

  21. 21.

    Blichert-Toft, J. & White, W. M. Hf isotope geochemistry of the Galapagos Islands. Geochem. Geophys. Geosys. 2, 2000GC000138 (2001).

    Google Scholar 

  22. 22.

    Saal, A. E. et al. The role of lithospheric gabbros on the composition of Galapagos lavas. Earth Planet. Sci. Lett. 257, 391–406 (2007).

    Google Scholar 

  23. 23.

    Peterson, M. E. et al. Origin of the ‘ghost plagioclase’ signature in Galapagos melt inclusions: new evidence from Pb isotopes. J. Petrol. 55, 2193–2216 (2014).

    Google Scholar 

  24. 24.

    Pilet, S., Baker, M. B. & Stolper, E. M. Metasomatized lithosphere and the origin of alkaline lavas. Science 320, 916–919 (2008).

    Google Scholar 

  25. 25.

    Sorbadere, F., Médard, E., Laporte, D. & Schiano, P. Experimental melting of hydrous peridotite–pyroxenite mixed sources: constraints on the genesis of silica-undersaturated magmas beneath volcanic arcs. Earth Planet. Sci. Lett. 384, 42–56 (2013).

    Google Scholar 

  26. 26.

    Salters, V. J. M., Mallick, S., Hart, S. R., Langmuir, C. E. & Stracke, A. Domains of depleted mantle: new evidence from hafnium and neodymium isotopes. Geochem. Geophys. Geosys. 12, Q08001 (2011).

    Google Scholar 

  27. 27.

    Buchs, D. M., Hoernle, K., Hauff, F. & Baumgartner, P. O. Evidence from accreted seamounts for a depleted component in the early Galapagos plume. Geology 44, 383–386 (2016).

    Google Scholar 

  28. 28.

    Hanan, B. B., Blichert-Toft, J., Kingsley, R. & Schilling, J. G. Depleted Iceland mantle plume geochemical signature: artifact of multicomponent mixing? Geochem. Geophys. Geosys. 1, 1003 (2000).

    Google Scholar 

  29. 29.

    Workman, R. K. et al. Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: evidence from the Samoan Volcanic Chain. Geochem. Geophys. Geosys. 5, Q04008 (2004).

    Google Scholar 

  30. 30.

    Chen, C. Y. & Frey, F. A. Origin of Hawaiian tholeiite and alkalic basalt. Nature 302, 785–789 (1983).

    Google Scholar 

  31. 31.

    Moore, J. G. & Clague, D. A. Volcano growth and evolution of the island of Hawaii. Geol. Soc. Am. Bull. 104, 1471–1484 (1992).

    Google Scholar 

  32. 32.

    Ozawa, A., Tagami, T. & Garcia, M. O. Unspiked K–Ar dating of the Honolulu rejuvenated and Ko’olau shield volcanism on O’ahu, Hawai’i. Earth Planet. Sci. Lett. 232, 1–11 (2005).

    Google Scholar 

  33. 33.

    Hanano, D., Weis, D., Scoates, J. S., Aciego, S. & DePaolo, D. J. Horizontal and vertical zoning of heterogeneities in the Hawaiian mantle plume from the geochemistry of consecutive postshield volcano pairs: Kohala-Mahukona and Mauna Kea-Hualalai. Geochem. Geophys. Geosys. 11, Q01004 (2010).

    Google Scholar 

  34. 34.

    Ribe, N. M. & Christensen, U. R. The dynamical origin of Hawaiian volcanism. Earth Planet. Sci. Lett. 171, 517–531 (1999).

    Google Scholar 

  35. 35.

    Bianco, T. A., Ito, G., Becker, J. M. & Garcia, M. O. Secondary Hawaiian volcanism formed by flexural arch decompression. Geochem. Geophys. Geosys. 6, Q08009 (2005).

    Google Scholar 

  36. 36.

    Garcia, M. O. et al. Petrology, geochemistry and geochronology of Kaua’i lavas over 4·5 Myr: implications for the origin of rejuvenated volcanism and the evolution of the Hawaiian plume. J. Petrol. 51, 1507–1540 (2010).

    Google Scholar 

  37. 37.

    Garcia, M. O. et al. Age, geology, geophysics, and geochemistry of Mahukona Volcano, Hawai’i. Bull. Volcanol. 74, 1445–1463 (2012).

    Google Scholar 

  38. 38.

    Phillips, E. H. et al. Isotopic constraints on the genesis and evolution of basanitic lavas at Haleakala, Island of Maui, Hawaii. Geochim. Cosmochim. Acta 195, 201–225 (2016).

    Google Scholar 

  39. 39.

    Fekiacova, Z., Abouchami, W., Galer, S. J. G., Garcia, M. O. & Hofmann, A. W. Origin and temporal evolution of Ko’olau Volcano, Hawai’i: inferences from isotope data on the Ko’olau Scientific Drilling Project (KSDP), the Honolulu Volcanics and ODP Site 843. Earth Planet. Sci. Lett. 261, 65–83 (2007).

    Google Scholar 

  40. 40.

    Sherrod, D. R., Nishimitsu, Y. & Tagami, T. New K–Ar ages and the geologic evidence against rejuvenated stage volcanism at Haleakalā, East Maui, a postshield-stage volcano of the Hawaiian island chain. Bull. Geol. Soc. Am. 115, 683–694 (2003).

    Google Scholar 

  41. 41.

    Huang, S., Regelous, M., Thordarson, T. & Frey, F. A. Petrogenesis of lavas from Detroit Seamount: geochemical differences between Emperor Chain and Hawaiian volcanoes. Geochem. Geophys. Geosys. 6, Q01L06 (2005).

    Google Scholar 

  42. 42.

    Stolper, E., Sherman, S., Garcia, M., Baker, M. & Seaman, C. Glass in the submarine section of the HSDP2 drill core, Hilo, Hawaii. Geochem. Geophys. Geosys. 5, Q07G15 (2004).

    Google Scholar 

  43. 43.

    Herzberg, C. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature 444, 605–609 (2006).

    Google Scholar 

  44. 44.

    Rhodes, J. M., Huang, S., Frey, F. A., Pringle, M. & Xu, G. Compositional diversity of Mauna Kea shield lavas recovered by the Hawaii Scientific Drilling Project: inferences on source lithology, magma supply, and the role of multiple volcanoes. Geochem. Geophys. Geosys. 13, Q03014 (2012).

    Google Scholar 

  45. 45.

    Huang, S. & Humayun, M. Petrogenesis of high-CaO lavas from Mauna Kea, Hawaii: constraints from trace element abundances. Geochim. Cosmochim. Acta 185, 198–215 (2016).

    Google Scholar 

  46. 46.

    Sharp, W. D. & Renne, P. R. The 40Ar/39Ar dating of core recovered by the Hawaii Scientific Drilling Project (phase 2), Hilo, Hawaii. Geochem. Geophys. Geosys. 6, Q04G17 (2005).

    Google Scholar 

  47. 47.

    Rhodes, J. M. & Vollinger, M. J. Composition of basaltic lavas sampled by phase-2 of the Hawaii Scientific Drilling Project: geochemical stratigraphy and magma types. Geochem. Geophys. Geosys. 6, Q03G13 (2004).

    Google Scholar 

  48. 48.

    Garcia, M. O., Weis, D., Swinnard, L., Ito, G. & Pietruszka, A. J. Petrology and geochemistry of volcanic rocks from the South Kaua’i Swell Volcano, Hawai’i: implications for the lithology and composition of the Hawaiian Mantle Plume. J. Petrol. 56, 1173–1197 (2015).

    Google Scholar 

  49. 49.

    Dixon, J. E. et al. Light stable isotopic compositions of enriched mantle sources: resolving the dehydration paradox. Geochem. Geophys. Geosys. 18, 3801–3839 (2017).

    Google Scholar 

  50. 50.

    Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosys. 5, Q05B07 (2004).

    Google Scholar 

  51. 51.

    Phipps Morgan, J. Thermodynamics of pressure release melting of a veined plum pudding mantle. Geochem. Geophys. Geosys. 2, 2000GC000049 (2001).

    Google Scholar 

  52. 52.

    Brunelli, D., Cipriani, A. & Bonatti, E. Thermal effects of pyroxenites on mantle melting below mid-ocean ridges. Nat. Geosci. 11, 520–525 (2018).

    Google Scholar 

  53. 53.

    Jones, T. D. et al. The concurrent emergence and causes of double volcanic hotspot tracks on the Pacific plate. Nature 545, 472–476 (2017).

    Google Scholar 

  54. 54.

    Bryce, J. G., DePaolo, D. J. & Lassiter, J. C. Geochemical structure of the Hawaiian plume: Sr, Nd, and Os isotopes in the 2.8 km HSDP-2 section of Mauna Kea volcano. Geochem. Geophys. Geosys. 6, Q09G18 (2005).

    Google Scholar 

  55. 55.

    Farnetani, C. G., Hofmann, A. W. & Class, C. How double volcanic chains sample geochemical anomalies from the lowermost mantle. Earth Planet. Sci. Lett. 359–360, 240–247 (2012).

    Google Scholar 

  56. 56.

    DePaolo, D. J., Bryce, J. G., Dodson, A., Shuster, D. L. & Kennedy, B. M. Isotopic evolution of Mauna Loa and the chemical structure of the Hawaiian plume. Geochem. Geophys. Geosys. 2, 2000GC000139 (2001).

    Google Scholar 

  57. 57.

    Huang, S., Blichert-Toft, J., Fodor, R. V., Bauer, G. R. & Bizimis, M. Sr, Nd, Hf and Pb isotope systematics of postshield-stage lavas at Kahoolawe, Hawaii. Chem. Geol. 360–361, 159–172 (2013).

    Google Scholar 

  58. 58.

    Abouchami, W. et al. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 434, 851–856 (2005).

    Google Scholar 

  59. 59.

    Huang, S., Hall, P. S. & Jackson, M. G. Geochemical zoning of volcanic chains associated with Pacific hotspots. Nat. Geosci. 4, 874–878 (2011).

    Google Scholar 

  60. 60.

    Weis, D., Garcia, M. O., Rhodes, J. M., Jellinek, M. & Scoates, J. S. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nat. Geosci. 4, 831–838 (2011).

    Google Scholar 

  61. 61.

    Huang, S. & Frey, F. A. Trace element abundances of Mauna Kea basalt from phase 2 of the Hawaii Scientific Drilling Project: petrogenetic implications of correlations with major element content and isotopic ratios. Geochem. Geophys. Geosys. 4, 8711 (2003).

    Google Scholar 

  62. 62.

    Vervoort, J. D., Plank, T. & Prytulak, J. The Hf–Nd isotopic composition of marine sediments. Geochim. Cosmochim. Acta 75, 5903–5926 (2011).

    Google Scholar 

  63. 63.

    Abouchami, W., Galer, S. J. G. & Hofmann, A. W. High precision lead isotope systematics of lavas from the Hawaiian Scientific Drilling Project. Chem. Geol. 169, 187–209 (2000).

    Google Scholar 

  64. 64.

    Xu, G., Frey, F. A., Clague, D. A., Weis, D. & Beeson, M. H. East Molokai and other Kea-trend volcanoes: magmatic processes and sources as they migrate away from the Hawaiian hot spot. Geochem. Geophys. Geosys. 6, Q05008 (2005).

    Google Scholar 

  65. 65.

    Blichert-Toft, J., Frey, F. A. & Albarède, F. Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science 285, 879–882 (1999).

    Google Scholar 

  66. 66.

    Blichert-Toft, J. & Albarède, F. Hf isotopic compositions of the Hawaii Scientific Drilling Project core and the source mineralogy of Hawaiian basalts. Geophys. Res. Lett. 26, 935–938 (1999).

    Google Scholar 

  67. 67.

    Eisele, J., Abouchami, W., Galer, S. J. G. & Hofmann, A. W. The 320 kyr Pb isotope evolution of Mauna Kea lavas recorded in the HSDP-2 drill core. Geochem. Geophys. Geosys. 4, 8710 (2003).

    Google Scholar 

  68. 68.

    Blichert-Toft., J., Weis, D., Maerschalk, C., Agranier, A. & Albarède, F. Hawaiian hot spot dynamics as inferred from the Hf and Pb isotope evolution of Mauna Kea volcano. Geochem. Geophys. Geosys. 4, 8710 (2003).

    Google Scholar 

  69. 69.

    Bryce, J. G., DePaolo, D. J. & Lassiter, J. C. Geochemical structure of the Hawaiian plume: Sr, Nd, and Os isotopes in the 2.8 km HSDP-2 section of Mauna Kea volcano. Geochem. Geophys. Geosys. 6, Q09G18 (2005).

    Google Scholar 

  70. 70.

    Chen, C. Y., Frey, F. A. & Garcia, M. O. Evolution of alkalic lavas at Haleakala Volcano, east Maui, Hawaii—major, trace element and isotopic constraints. Contrib. Mineral. Petrol. 105, 197–218 (1990).

    Google Scholar 

  71. 71.

    Chen, C. Y., Frey, F. A., Garcia, M. O., Dalrymple, G. B. & Hart, S. R. The tholeiite to alkalic basalt transition at Haleakala Volcano, Maui, Hawaii. Contrib. Mineral. Petrol. 106, 183–200 (1991).

    Google Scholar 

  72. 72.

    Chen, C. Y., Frey, F. A., Rhodes, J. M. & Easton, R. M. Temporal geochemical evolution of Kilauea Volcano: comparison of Hilina and Puna basalt. Geophys. Monogr. Ser. 95, 161–181 (1995).

    Google Scholar 

  73. 73.

    Easton, R. & Garcia, M. Petrology of the Hilina formation, Kīlauea Volcano, Hawai’i. Bull. Volcanol. 43, 657–673 (1980).

    Google Scholar 

  74. 74.

    Gaffney, A. M., Nelson, B. K. & Blichert-Toft, J. Geochemical constraints on the role of oceanic lithospere in intra-volcano heterogeneity at West Maui, Hawaii. J. Petrol. 45, 1663–1687 (2004).

    Google Scholar 

  75. 75.

    Gaffney, A. M., Nelson, B. K. & Blichert-Toft, J. Melting in the Hawaiian plume at 1–2 Ma as recorded at Maui Nui: the role of eclogite, peridotite, and source mixing. Geochem. Geophys. Geosys. 6, Q10L11 (2005).

    Google Scholar 

  76. 76.

    Garcia, M. O., Rhodes, J. M., Trusdell, F. A. & Pietruszka, A. J. Petrology of lavas from the Puu Oo eruption of Kilauea Volcano: III. The Kupaianaha episode (1986–1992). Bull. Volcanol. 58, 359–379 (1996).

    Google Scholar 

  77. 77.

    Garcia, M. O., Pietruszka, A. J., Rhodes, J. M. & Swanson, K. Magmatic processes during the prolonged Pu’u’O’o eruption of Kilauea Volcano, Hawaii. J. Petrol. 41, 967–990 (2000).

    Google Scholar 

  78. 78.

    Hofmann, A. W., Feigenson, M. D. & Raczek, I. Case studies on the origin of basalt: III. Petrogenesis of the Mauna Ulu eruption, Kilauea, 1969–1971. Contrib. Mineral. Petrol. 88, 24–35 (1984).

    Google Scholar 

  79. 79.

    Wright, T. L., Swanson, D. A. & Duffield, W. A. Chemical compositions of Kilauea east rift lava, 1968–1971. J. Petrol. 16, 110–133 (1975).

    Google Scholar 

  80. 80.

    Hofmann, A. W., Feigenson, M. D. & Raczek, I. Kohala revisited Contrib. Mineral. Petrol. 95, 114–122 (1987).

    Google Scholar 

  81. 81.

    Norman, M. D. & Garcia, M. O. Primitive magmas and source characteristics of the Hawaiian plume: petrology and geochemistry of shield picrites. Earth Planet. Sci. Lett. 168, 27–44 (1999).

    Google Scholar 

  82. 82.

    Pietruszka, A. J. & Garcia, M. O. A rapid fluctuation in the mantle source and melting history of Kilauea Volcano inferred from the geochemistry of its historical summit lavas (1790–1982). J. Petrol. 40, 1321–1342 (1999).

    Google Scholar 

  83. 83.

    Rhodes, J. M. Geochemical stratigraphy of lava flows sampled by the Hawaii Scientific Drilling Project. J. Geophys. Res. 101, 11729–11746 (1996).

    Google Scholar 

  84. 84.

    Rhodes, J. M. & Vollinger, M. J. Composition of basaltic lavas sampled by phase-2 of the Hawaii Scientific Drilling Project: geochemical stratigraphy and magma types. Geochem. Geophys. Geosys. 5, Q03G13 (2004).

    Google Scholar 

  85. 85.

    Sims, K. W. W. et al. Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: inferences from 238U–230Th–226Ra and 235U–231Pa disequilibria. Geochim. Cosmochim. Acta 63, 4119–4138 (1999).

    Google Scholar 

  86. 86.

    Stille, P., Unruh, D. M. & Tatsumoto, M. Pb, Sr, Nd, and Hf isotopic constraints on the origin of Hawaiian basalts and evidence for a unique mantle source. Geochim. Cosmochim. Acta 50, 2303–2319 (1986).

    Google Scholar 

  87. 87.

    Tanaka, R., Makishima, A. & Nakamura, E. Hawaiian double volcanic chain triggered by an episodic involvement of recycled material: constraints from temporal Sr–Nd–Hf–Pb isotopic trend of the Loa-type volcanoes. Earth Planet. Sci. Lett. 265, 450–465 (2008).

    Google Scholar 

  88. 88.

    West, H. B., Gerlach, D. C., Leeman, W. P. & Garcia, M. O. Isotopic constraints on the origin of Hawaiian lavas from the Maui Volcanic Complex, Hawaii. Nature 330, 216–220 (1987).

    Google Scholar 

  89. 89.

    Xu, G. et al. Geochemical characteristics of West Molokai shield- and postshield-stage lavas: constraints on Hawaiian plume models. Geochem. Geophys. Geosys. 8, Q08G21 (2007).

    Google Scholar 

  90. 90.

    Basu, A. R. & Faggart, B. E. Temporal isotopic variations in the Hawaiian mantle plume: the Lanai anomaly, the Molokai Fracture Zone and a seawater-altered lithospheric component in Hawaiian volcanism. Geophys. Monogr. Ser. 95, 149–159 (1995).

    Google Scholar 

  91. 91.

    Leeman, W. P., Gerlach, D. C., Garcia, M. O. & West, H. B. Geochemical variations in lavas from Kahoolawe volcano, Hawaii: evidence for open system evolution of plume-derived magmas. Contrib. Mineral. Petrol. 116, 62–77 (1994).

    Google Scholar 

  92. 92.

    Huang, S. et al. Enriched components in the Hawaiian plume: evidence from Kahoolawe volcano, Hawaii. Geochem. Geophys. Geosys. 6, Q11006 (2005).

    Google Scholar 

  93. 93.

    Huang, S. et al. Ancient carbonate sedimentary signature in the Hawaiian plume: evidence from Mahukona Volcano, Hawaii. Geochem. Geophys. Geosys. 10, Q08002 (2009).

    Google Scholar 

  94. 94.

    Valbracht, P. J., Staudigel, H., Honda, M., McDougall, I. & Davies, G. F. Isotopic tracing of volcanic source regions from Hawaii: decoupling of gaseous from lithophile magma components. Earth Planet. Sci. Lett. 144, 185–198 (1996).

    Google Scholar 

  95. 95.

    Clague, D. A. Hawaiian alkaline volcanism. Geol. Soc. 30, 227–252 (1987).

    Google Scholar 

  96. 96.

    Bennett, V. C., Esat, T. M. & Norman, M. D. Two mantle-plume components in Hawaiian picrites inferred from correlated Os–Pb isotopes. Nature 381, 221–224 (1996).

    Google Scholar 

  97. 97.

    Stracke, A., Salters, V. J. M. & Sims, K. W. W. Assessing the presence of garnet–pyroxenite in the mantle sources of basalts through combined hafnium–neodymium–thorium isotope systematics. Geochem. Geophys. Geosys. 1, 1006 (2000).

    Google Scholar 

  98. 98.

    Cousens, B. L., Clague, D. A. & Sharp, W. D. Chronology, chemistry, and origin of trachytes from Hualalai Volcano, Hawaii. Geochem. Geophys. Geosys. 4, 1078 (2003).

    Google Scholar 

  99. 99.

    Lassiter, J. C. & Hauri, E. H. Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet. Sci. Lett. 164, 483–496 (1998).

    Google Scholar 

  100. 100.

    Garcia, M. O., Foss, D. J. P., West, H. B. & Mahoney, J. J. Geochemical and isotopic evolution of Loihi volcano, Hawaii. J. Petrol. 36, 1647–1671 (1995).

    Google Scholar 

  101. 101.

    Hauri, E. H., Lassiter, J. C. & DePaolo, D. J. Osmium isotope systematics of drilled lavas from Mauna Loa, Hawaii. J. Geophys. Res. Solid Earth 101, 11793–11806 (1996).

    Google Scholar 

  102. 102.

    Rhodes, J. M. & Hart, S. R. Episodic trace element and isotopic variations in historical Mauna Loa lavas: implications for magma and plume dynamics. Geophys. Monogr. Ser. 92, 263–288 (1995).

    Google Scholar 

  103. 103.

    Kurz, M. D., Kenna, T. C., Kammer, D. P., Rhodes, J. M. & Garcia, O. Isotopic evolution of Mauna Loa Volcano: a view from the submarine Southwest Rift Zone. Geophys. Monogr. Ser. 92, 289–306 (1995).

    Google Scholar 

  104. 104.

    Cohen, A. S., Keith O’Nions, R. & Kurz, M. D. Chemical and isotopic variations in Mauna Loa tholeiites. Earth Planet. Sci. Lett. 143, 111–124 (1996).

    Google Scholar 

  105. 105.

    Garcia, M. O., Ito, E., Eiler, J. M. & Pietruszka, A. J. Crustal contamination of Kilauea Volcano magmas revealed by oxygen isotope analyses of glass and olivine from Puu Oo eruption lavas. J. Petrol. 39, 803–817 (1998).

    Google Scholar 

  106. 106.

    Garcia, M. O., Jorgenson, B. A., Mahoney, J. J., Ito, E. & Irving, A. J. An evaluation of temporal geochemical evolution of Loihi summit lavas: results from Alvin submersible dives. J. Geophys. Res. 98, 537–550 (1993).

    Google Scholar 

  107. 107.

    Frey, F. A., Garcia, M. O. & Roden, M. F. Geochemical characteristics of Koolau Volcano: implications of intershield geochemical differences among Hawaiian volcanoes. Geochim. Cosmochim. Acta 58, 1441–1462 (1994).

    Google Scholar 

  108. 108.

    Roden, M. F., Trull, T., Hart, S. R. & Frey, F. A. New He, Nd, Pb, and Sr isotopic constraints on the constitution of the Hawaiian plume: results from Koolau Volcano, Oahu, Hawaii, USA. Geochim. Cosmochim. Acta 58, 1431–1440 (1994).

    Google Scholar 

  109. 109.

    Stille, P., Unruh, D. M. & Tatsumoto, M. Pb, Sr, Nd and Hf isotopic evidence of multiple sources for Oahu, Hawaii basalts. Nature 304, 25–29 (1983).

    Google Scholar 

  110. 110.

    Haskins, E. H. & Garcia, M. O. Scientific drilling reveals geochemical heterogeneity within the Ko’olau shield, Hawai’i. Contrib. Mineral. Petrol. 147, 162–188 (2004).

    Google Scholar 

  111. 111.

    Salters, V. J. M., Blichert-Toft, J., Fekiacova, Z., Sachi-Kocher, A. & Bizimis, M. Isotope and trace element evidence for depleted lithosphere in the source of enriched Ko’olau basalts. Contrib. Mineral. Petrol. 151, 297–312 (2006).

    Google Scholar 

  112. 112.

    Jackson, M. C., Frey, Fa, Garcia, M. O. & Wilmoth, R. A. Geology and geochemistry of basaltic lava flows and dykes from the Trans-Loolau tunnel, Oahu, Hawaii. Bull. Volcanol. 60, 381–401 (1999).

    Google Scholar 

  113. 113.

    Reiners, P. W. & Nelson, B. K. Temporal–compositional–isotopic trends in rejuvenated-stage magmas of Kauai, Hawaii, and implications for mantle melting processes. Geochim. Cosmochim. Acta 62, 2347–2368 (1998).

    Google Scholar 

  114. 114.

    Cousens, B. L. & Clague, D. A. Shield to rejuvenated-stage volcanism on Kauai and Niihau, Hawaiian Islands. J. Petrol. 56, 1547–1584 (2014).

    Google Scholar 

  115. 115.

    Clague, D. A. & Dalrymple, G. B. Age and petrology of alkalic postshield and rejuvenated-stage lava from Kauai, Hawaii. Contrib. Mineral. Petrol. 99, 202–218 (1988).

    Google Scholar 

  116. 116.

    Castillo, P. R., Natland, J. H., Niu, Y. & Lonsdale, P. F. Sr, Nd and Pb isotopic variation along the Pacific–Antarctic risecrest, 53–57° S: implications for the composition and dynamics of the South Pacific upper mantle. Earth Planet. Sci. Lett. 154, 109–125 (1998).

    Google Scholar 

  117. 117.

    Castillo, P. R. et al. Petrology and Sr, Nd, and Pb isotope geochemistry of mid-ocean ridge basalt glasses from the 11° 45′ N to 15° 00′ N segment of the East Pacific Rise. Geochem. Geophys. Geosys. 1, 1011 (2000).

    Google Scholar 

  118. 118.

    Chauvel, C. & Blichert-Toft, J. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet. Sci. Lett. 190, 137–151 (2001).

    Google Scholar 

  119. 119.

    Niu, Y. L., Collerson, K. D., Batiza, R., Wendt, J. I. & Regelous, M. Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: the East Pacific Rise at 11° 20′ N. Geophys. Res. Earth 104, 7067–7087 (1999).

    Google Scholar 

  120. 120.

    Sims, K. W. W. et al. Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochim. Cosmochim. Acta 66, 3481–3504 (2002).

    Google Scholar 

  121. 121.

    Sims, K. W. W. et al. Aberrant youth: chemical and isotopic constraints on the origin of off-axis lavas from the East Pacific Rise, 9°–10° N. Geochem. Geophys. Geosys. 4, 8621 (2003).

    Google Scholar 

  122. 122.

    Wendt, J. I., Regelous, M., Niu, Y., Hékinian, R. & Collerson, K. D. Geochemistry of lavas from the Garrett Transform Fault: insights into mantle heterogeneity beneath the eastern Pacific. Earth Planet. Sci. Lett. 173, 271–284 (1999).

    Google Scholar 

  123. 123.

    Goss, A. R. et al. Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46′ N–9° 56′ N: implications for ridge crest plumbing and decadal changes in magma chamber compositions. Geochem. Geophys. Geosys. 11, Q05T09 (2010).

    Google Scholar 

  124. 124.

    Waters, C. L. et al. Sill to surface: linking young off-axis volcanism with subsurface melt at the overlapping spreading center at 9° 03′ N East Pacific Rise. Earth Planet. Sci. Lett. 369–370, 59–70 (2013).

    Google Scholar 

  125. 125.

    Hahm, D., Castillo, P. R. & Hilton, D. R. A deep mantle source for high 3He/4He ocean island basalts (OIB) inferred from Pacific near-ridge seamount lavas. Geophys. Res. Lett. 36, L20316 (2009).

    Google Scholar 

  126. 126.

    Hamelin, C., Dosso, L., Hanan, B., Barrat, J. A. & Ondréas, H. Sr–Nd–Hf isotopes along the Pacific Antarctic Ridge from 41 to 53° S. Geophys. Res. Lett. 37, L10303 (2010).

    Google Scholar 

  127. 127.

    Hamelin, C. et al. Geochemical portray of the Pacific Ridge: new isotopic data and statistical techniques. Earth Planet. Sci. Lett. 302, 154–162 (2011).

    Google Scholar 

  128. 128.

    Hanan, B. B. & Schilling, J. G. Easter Microplate evolution: Pb isotope evidence. J. Geophys. Res. 94, 7432–7448 (1989).

    Google Scholar 

  129. 129.

    Fontignie, D. & Schilling, J. G. 87Sr86Sr and REE variations along the Easter Microplate boundaries (south Pacific): application of multivariate statistical analyses to ridge segmentation. Chem. Geol. 89, 209–241 (1991).

    Google Scholar 

  130. 130.

    Kingsley, R. H., Blichert-Toft, J., Fontignie, D. & Schilling, J. G. Hafnium, neodymium, and strontium isotope and parent–daughter element systematics in basalts from the plume–ridge interaction system of the Salas y Gomez Seamount Chain and Easter Microplate. Geochem. Geophys. Geosys. 8, Q04005 (2007).

    Google Scholar 

  131. 131.

    Kempton, P. D. et al. Sr–Nd–Pb–Hf isotope results from ODP Leg 187: evidence for mantle dynamics of the Australian–Antarctic Discordance and origin of the Indian MORB source. Geochem., Geophys., Geosys. 3, 1074 (2002).

    Google Scholar 

  132. 132.

    Klein, E. M., Langmuir, C. H., Zindler, A., Staudigel, H. & Hamelin, B. Isotope evidence of a mantle convection boundary at the Australian–Antarctic Discordance. Nature 333, 623–629 (1988).

    Google Scholar 

  133. 133.

    Salters, V. J. M. The generation of mid-ocean ridge basalts from the Hf and Nd isotope perspective. Earth Planet. Sci. Lett. 141, 109–123 (1996).

    Google Scholar 

  134. 134.

    Mahoney, J. J., Storey, M., Duncan, R. A., Spencer, K. J. & Pringle, M. in The Mesozoic Pacific: Geology, Tectonics, and Volcanism (eds Pringle, M., Sager, W. W., Sliter, W. V. & Stein, S.) 233–261 (American Geophysical Union, 1993).

  135. 135.

    Hanan, B., Blichert-Toft, J., Pyle, D. & Christie, D. Contrasting origins of the upper mantle MORB source revealed by Hf and Pb isotopes from the Australian–Antarctic Discordance. Geochim. Cosmochim. Acta 68, A553– (2004).

    Google Scholar 

  136. 136.

    Niu, Y., Waggoner, D. G., Sinton, J. M. & Mahoney, J. J. Mantle source heterogeneity and melting processes beneath seafloor spreading centers: the East Pacific Rise, 18 °–19° S. J. Geophys. Res. 101, 27711–27733 (1996).

    Google Scholar 

  137. 137.

    Nowell, G. M. et al. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chem. Geol. 149, 211–233 (1998).

    Google Scholar 

  138. 138.

    Lawson, K., Searle, R. C., Pearce, J. A., Browning, P. & Kempton, P. Detailed volcanic geology of the MARNOK area, Mid-Atlantic Ridge north of Kane Transform. Geol. Soc. 118, 61–102 (1996).

    Google Scholar 

  139. 139.

    Pyle, D. G., Christie, D. M. & Mahoney, J. J. Resolving an isotopic boundary within the Australian–Antarctic Discordance. Earth Planet. Sci. Lett. 112, 161–178 (1992).

    Google Scholar 

  140. 140.

    Clague, D. A., Holcomb, R. T., Sinton, J. M., Detrick, R. S. & Torresan, M. E. Pliocene and Pleistocene alkalic flood basalts on the seafloor north of the Hawaiian islands. Earth Planet. Sci. Lett. 98, 175–191 (1990).

    Google Scholar 

  141. 141.

    Clague, D. A. & Frey, F. A. Petrology and trace element geochemistry of the Honolulu Volcanics, Oahu: implications for the oceanic mantle below Hawaii. J. Petrol. 23, 447–504 (1982).

    Google Scholar 

  142. 142.

    Klaver, M. et al. Temporal and spatial variations in provenance of Eastern Mediterranean Sea sediments: implications for Aegean and Aeolian arc volcanism. Geochim. Cosmochim. Acta 153, 149–168 (2015).

    Google Scholar 

  143. 143.

    Lee, C. T. A., Leeman, W. P., Canil, D. & Li, Z. X. A. Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J. Petrol. 46, 2313–2336 (2005).

    Google Scholar 

Download references

Acknowledgements

This project was supported by NSF grants EAR-1524387 and NSF Ocean Sciences grant no. 1355932. C.D. acknowledges the UNLV Department of Geoscience for support through the Jack and Fay Ross fellowship.

Author information

Affiliations

Authors

Contributions

C.D. and S.M. were responsible for the geochemical and isotopic measurements. All of the authors contributed to the data interpretation and model calculations and wrote the paper.

Corresponding authors

Correspondence to C. DeFelice or S. Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5.

Supplementary Table 1

Radiogenic isotope ratios of high-CaO basalts from HSDP.

Supplementary Table 2

Major and trace element concentrations of high-CaO basalts from HSDP, analysed by ICP-MS at the University of Nevada, Las Vegas. All oxides are reported in wt% and trace elements are in ppm.

Supplementary Table 3

Radiogenic isotope ratios for blind duplicate samples and the original measurements of high-CaO basalts, and two HSDP samples analysed, Sr860-8.10 and Sr07613.23, refs 62,64–66.

Supplementary Table 4

Mineral modes, melt reactions and mineral partition coefficients used for the non-modal batch partial melting model. Mineral modes and melt reactions are of a garnet peridotite from ref. 141. Sc and V partition coefficients calculated based on ref. 45. DM starting concentrations from ref. 52. Sc and V starting composition from ref. 143. Partition coefficients from ref. 12, and if not listed, are calculated from the average of their neighbouring elements.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

DeFelice, C., Mallick, S., Saal, A.E. et al. An isotopically depleted lower mantle component is intrinsic to the Hawaiian mantle plume. Nat. Geosci. 12, 487–492 (2019). https://doi.org/10.1038/s41561-019-0348-0

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing