Article | Published:

An isotopically depleted lower mantle component is intrinsic to the Hawaiian mantle plume

Nature Geoscience (2019) | Download Citation


Most ocean island basalts sample an isotopically depleted mantle component, but the origin of this component is unclear. It may come from either the entrained upper mantle or from a reservoir intrinsic to the plume, sourced from the lower mantle. For Hawaii, the isotopically depleted component is primarily sampled during the secondary rejuvenated-stage volcanism, 0.5–2 million years after the initial shield-stage volcanism. However, it is also inferred in shield and post-shield lavas. We analyse the radiogenic isotopic and trace element compositions of a suite of Mauna Kea shield-stage tholeiites, and found that they have the same isotopic compositions as rejuvenated-stage lavas. We use trace element models to show that these shield-stage basalts can be explained as higher degree partial melts of a rejuvenated-stage source. Our data, therefore, show that the depleted rejuvenated-stage component was directly sampled during shield-stage volcanism. The common source for both shield-stage and secondary rejuvenated volcanism implies that the depleted rejuvenated component is intrinsic to the Hawaiian mantle plume. It is further inferred that the mantle region from which the Hawaiian plume originates, probably in the lower mantle, is also isotopically depleted, similar but not identical to the upper mantle.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The authors declare that all the data supporting the findings of this study are available within the article and its Supplementary Information.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Hofmann, A. W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988).

  2. 2.

    Kurz, M. D., Curtice, J., Lott, D. E. & Solow, A. Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaiian Scientific Drilling Project. Geochem. Geophys. Geosys. 5, Q04G14 (2004).

  3. 3.

    DePaolo, D. J. & Wasserburg, G. J. Nd isotopic variations and petrogenetic models. Geophys. Res. Lett. 3, 249–252 (1976).

  4. 4.

    Stracke, A. Earth’s heterogeneous mantle: a product of convection-driven interaction between crust and mantle. Chem. Geol. 330–331, 274–299 (2012).

  5. 5.

    Chen, C. Y. & Frey, F. A. Trace element and isotopic geochemistry of lavas from Haleakala volcano, East Maui, Hawaii: implications for the origin of Hawaiian basalts. J. Geophys. Res. 90, 8743–8768 (1985).

  6. 6.

    Keller, R. A., Fisk, M. R. & White, W. M. Isotopic evidence for late Cretaceous plume–ridge interaction at the Hawaiian hotspot. Nature 405, 673–676 (2000).

  7. 7.

    Lassiter, J. C., Hauri, E. H., Reiners, P. W. & Garcia, M. O. Generation of Hawaiian post-erosional lavas by melting of a mixed lherzolite/pyroxenite source. Earth Planet. Sci. Lett. 178, 269–284 (2000).

  8. 8.

    Regelous, M., Hofmann, A. W., Abouchami, W. & Galer, S. J. G. Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J. Petrol. 44, 113–140 (2003).

  9. 9.

    Yang, H. J., Frey, F. A. & Clague, D. A. Constraints on the source components of lavas forming the Hawaiian North Arch and Honolulu Volcanics. J. Petrol. 44, 603–627 (2003).

  10. 10.

    Frey, F. A., Huang, S., Blichert-Toft, J., Regelous, M. & Boyet, M. Origin of depleted components in basalt related to the Hawaiian hot spot: evidence from isotopic and incompatible element ratios. Geochem. Geophys. Geosys. 6, Q02L07 (2005).

  11. 11.

    Bizimis, M., Salters, V. J. M., Garcia, M. O. & Norman, M. D. The composition and distribution of the rejuvenated component across the Hawaiian plume: Hf–Nd–Sr–Pb isotope systematics of Kaula lavas and pyroxenite xenoliths. Geochem. Geophys. Geosys. 14, 4458–4478 (2013).

  12. 12.

    Dixon, J., Clague, D. A., Cousens, B., Monsalve, M. L. & Uhl, J. Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii. Geochem. Geophys. Geosys. 9, Q09005 (2008).

  13. 13.

    Mukhopadhyay, S., Lassiter, J. C., Farley, K. A. & Bogue, S. W. Geochemistry of Kauai shield-stage lavas: implications for the chemical evolution of the Hawaiian plume. Geochem. Geophys. Geosys. 4, 1009 (2003).

  14. 14.

    Chauvel, C. & Hémond, C. Melting of a complete section of recycled oceanic crust: trace element and Pb isotopic evidence from Iceland. Geochem. Geophys. Geosys. 1, 1001 (2000).

  15. 15.

    Fitton, J., Saunders, A., Norry, M., Hardarson, B. & Taylor, R. Thermal and chemical structure of the Iceland plume. Earth Planet. Sci. Lett. 153, 197–208 (1997).

  16. 16.

    Fitton, J. G., Saunders, A. D., Kempton, P. D. & Hardarson, B. S. Does depleted mantle form an intrinsic part of the Iceland plume? Geochem. Geophys. Geosys. 4, 1032 (2003).

  17. 17.

    Storey, M. et al. Geochemical evidence for plume–mantle interactions beneath Kerguelen and Heard Islands, Indian Ocean. Nature 336, 371–374 (1988).

  18. 18.

    Frey, F. A. et al. Depleted components in the source of hotspot magmas: evidence from the Ninetyeast Ridge (Kerguelen). Earth Planet. Sci. Lett. 426, 293–304 (2015).

  19. 19.

    Jackson, M. G. et al. Helium and lead isotopes reveal the geochemical geometry of the Samoan plume. Nature 514, 355–358 (2014).

  20. 20.

    Konter, J. G. & Jackson, M. G. Large volumes of rejuvenated volcanism in Samoa: evidence supporting a tectonic influence on late-stage volcanism. Geochem. Geophys. Geosys. 13, Q0AM04 (2012).

  21. 21.

    Blichert-Toft, J. & White, W. M. Hf isotope geochemistry of the Galapagos Islands. Geochem. Geophys. Geosys. 2, 2000GC000138 (2001).

  22. 22.

    Saal, A. E. et al. The role of lithospheric gabbros on the composition of Galapagos lavas. Earth Planet. Sci. Lett. 257, 391–406 (2007).

  23. 23.

    Peterson, M. E. et al. Origin of the ‘ghost plagioclase’ signature in Galapagos melt inclusions: new evidence from Pb isotopes. J. Petrol. 55, 2193–2216 (2014).

  24. 24.

    Pilet, S., Baker, M. B. & Stolper, E. M. Metasomatized lithosphere and the origin of alkaline lavas. Science 320, 916–919 (2008).

  25. 25.

    Sorbadere, F., Médard, E., Laporte, D. & Schiano, P. Experimental melting of hydrous peridotite–pyroxenite mixed sources: constraints on the genesis of silica-undersaturated magmas beneath volcanic arcs. Earth Planet. Sci. Lett. 384, 42–56 (2013).

  26. 26.

    Salters, V. J. M., Mallick, S., Hart, S. R., Langmuir, C. E. & Stracke, A. Domains of depleted mantle: new evidence from hafnium and neodymium isotopes. Geochem. Geophys. Geosys. 12, Q08001 (2011).

  27. 27.

    Buchs, D. M., Hoernle, K., Hauff, F. & Baumgartner, P. O. Evidence from accreted seamounts for a depleted component in the early Galapagos plume. Geology 44, 383–386 (2016).

  28. 28.

    Hanan, B. B., Blichert-Toft, J., Kingsley, R. & Schilling, J. G. Depleted Iceland mantle plume geochemical signature: artifact of multicomponent mixing? Geochem. Geophys. Geosys. 1, 1003 (2000).

  29. 29.

    Workman, R. K. et al. Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: evidence from the Samoan Volcanic Chain. Geochem. Geophys. Geosys. 5, Q04008 (2004).

  30. 30.

    Chen, C. Y. & Frey, F. A. Origin of Hawaiian tholeiite and alkalic basalt. Nature 302, 785–789 (1983).

  31. 31.

    Moore, J. G. & Clague, D. A. Volcano growth and evolution of the island of Hawaii. Geol. Soc. Am. Bull. 104, 1471–1484 (1992).

  32. 32.

    Ozawa, A., Tagami, T. & Garcia, M. O. Unspiked K–Ar dating of the Honolulu rejuvenated and Ko’olau shield volcanism on O’ahu, Hawai’i. Earth Planet. Sci. Lett. 232, 1–11 (2005).

  33. 33.

    Hanano, D., Weis, D., Scoates, J. S., Aciego, S. & DePaolo, D. J. Horizontal and vertical zoning of heterogeneities in the Hawaiian mantle plume from the geochemistry of consecutive postshield volcano pairs: Kohala-Mahukona and Mauna Kea-Hualalai. Geochem. Geophys. Geosys. 11, Q01004 (2010).

  34. 34.

    Ribe, N. M. & Christensen, U. R. The dynamical origin of Hawaiian volcanism. Earth Planet. Sci. Lett. 171, 517–531 (1999).

  35. 35.

    Bianco, T. A., Ito, G., Becker, J. M. & Garcia, M. O. Secondary Hawaiian volcanism formed by flexural arch decompression. Geochem. Geophys. Geosys. 6, Q08009 (2005).

  36. 36.

    Garcia, M. O. et al. Petrology, geochemistry and geochronology of Kaua’i lavas over 4·5 Myr: implications for the origin of rejuvenated volcanism and the evolution of the Hawaiian plume. J. Petrol. 51, 1507–1540 (2010).

  37. 37.

    Garcia, M. O. et al. Age, geology, geophysics, and geochemistry of Mahukona Volcano, Hawai’i. Bull. Volcanol. 74, 1445–1463 (2012).

  38. 38.

    Phillips, E. H. et al. Isotopic constraints on the genesis and evolution of basanitic lavas at Haleakala, Island of Maui, Hawaii. Geochim. Cosmochim. Acta 195, 201–225 (2016).

  39. 39.

    Fekiacova, Z., Abouchami, W., Galer, S. J. G., Garcia, M. O. & Hofmann, A. W. Origin and temporal evolution of Ko’olau Volcano, Hawai’i: inferences from isotope data on the Ko’olau Scientific Drilling Project (KSDP), the Honolulu Volcanics and ODP Site 843. Earth Planet. Sci. Lett. 261, 65–83 (2007).

  40. 40.

    Sherrod, D. R., Nishimitsu, Y. & Tagami, T. New K–Ar ages and the geologic evidence against rejuvenated stage volcanism at Haleakalā, East Maui, a postshield-stage volcano of the Hawaiian island chain. Bull. Geol. Soc. Am. 115, 683–694 (2003).

  41. 41.

    Huang, S., Regelous, M., Thordarson, T. & Frey, F. A. Petrogenesis of lavas from Detroit Seamount: geochemical differences between Emperor Chain and Hawaiian volcanoes. Geochem. Geophys. Geosys. 6, Q01L06 (2005).

  42. 42.

    Stolper, E., Sherman, S., Garcia, M., Baker, M. & Seaman, C. Glass in the submarine section of the HSDP2 drill core, Hilo, Hawaii. Geochem. Geophys. Geosys. 5, Q07G15 (2004).

  43. 43.

    Herzberg, C. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature 444, 605–609 (2006).

  44. 44.

    Rhodes, J. M., Huang, S., Frey, F. A., Pringle, M. & Xu, G. Compositional diversity of Mauna Kea shield lavas recovered by the Hawaii Scientific Drilling Project: inferences on source lithology, magma supply, and the role of multiple volcanoes. Geochem. Geophys. Geosys. 13, Q03014 (2012).

  45. 45.

    Huang, S. & Humayun, M. Petrogenesis of high-CaO lavas from Mauna Kea, Hawaii: constraints from trace element abundances. Geochim. Cosmochim. Acta 185, 198–215 (2016).

  46. 46.

    Sharp, W. D. & Renne, P. R. The 40Ar/39Ar dating of core recovered by the Hawaii Scientific Drilling Project (phase 2), Hilo, Hawaii. Geochem. Geophys. Geosys. 6, Q04G17 (2005).

  47. 47.

    Rhodes, J. M. & Vollinger, M. J. Composition of basaltic lavas sampled by phase-2 of the Hawaii Scientific Drilling Project: geochemical stratigraphy and magma types. Geochem. Geophys. Geosys. 6, Q03G13 (2004).

  48. 48.

    Garcia, M. O., Weis, D., Swinnard, L., Ito, G. & Pietruszka, A. J. Petrology and geochemistry of volcanic rocks from the South Kaua’i Swell Volcano, Hawai’i: implications for the lithology and composition of the Hawaiian Mantle Plume. J. Petrol. 56, 1173–1197 (2015).

  49. 49.

    Dixon, J. E. et al. Light stable isotopic compositions of enriched mantle sources: resolving the dehydration paradox. Geochem. Geophys. Geosys. 18, 3801–3839 (2017).

  50. 50.

    Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosys. 5, Q05B07 (2004).

  51. 51.

    Phipps Morgan, J. Thermodynamics of pressure release melting of a veined plum pudding mantle. Geochem. Geophys. Geosys. 2, 2000GC000049 (2001).

  52. 52.

    Brunelli, D., Cipriani, A. & Bonatti, E. Thermal effects of pyroxenites on mantle melting below mid-ocean ridges. Nat. Geosci. 11, 520–525 (2018).

  53. 53.

    Jones, T. D. et al. The concurrent emergence and causes of double volcanic hotspot tracks on the Pacific plate. Nature 545, 472–476 (2017).

  54. 54.

    Bryce, J. G., DePaolo, D. J. & Lassiter, J. C. Geochemical structure of the Hawaiian plume: Sr, Nd, and Os isotopes in the 2.8 km HSDP-2 section of Mauna Kea volcano. Geochem. Geophys. Geosys. 6, Q09G18 (2005).

  55. 55.

    Farnetani, C. G., Hofmann, A. W. & Class, C. How double volcanic chains sample geochemical anomalies from the lowermost mantle. Earth Planet. Sci. Lett. 359–360, 240–247 (2012).

  56. 56.

    DePaolo, D. J., Bryce, J. G., Dodson, A., Shuster, D. L. & Kennedy, B. M. Isotopic evolution of Mauna Loa and the chemical structure of the Hawaiian plume. Geochem. Geophys. Geosys. 2, 2000GC000139 (2001).

  57. 57.

    Huang, S., Blichert-Toft, J., Fodor, R. V., Bauer, G. R. & Bizimis, M. Sr, Nd, Hf and Pb isotope systematics of postshield-stage lavas at Kahoolawe, Hawaii. Chem. Geol. 360–361, 159–172 (2013).

  58. 58.

    Abouchami, W. et al. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 434, 851–856 (2005).

  59. 59.

    Huang, S., Hall, P. S. & Jackson, M. G. Geochemical zoning of volcanic chains associated with Pacific hotspots. Nat. Geosci. 4, 874–878 (2011).

  60. 60.

    Weis, D., Garcia, M. O., Rhodes, J. M., Jellinek, M. & Scoates, J. S. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nat. Geosci. 4, 831–838 (2011).

  61. 61.

    Huang, S. & Frey, F. A. Trace element abundances of Mauna Kea basalt from phase 2 of the Hawaii Scientific Drilling Project: petrogenetic implications of correlations with major element content and isotopic ratios. Geochem. Geophys. Geosys. 4, 8711 (2003).

  62. 62.

    Vervoort, J. D., Plank, T. & Prytulak, J. The Hf–Nd isotopic composition of marine sediments. Geochim. Cosmochim. Acta 75, 5903–5926 (2011).

  63. 63.

    Abouchami, W., Galer, S. J. G. & Hofmann, A. W. High precision lead isotope systematics of lavas from the Hawaiian Scientific Drilling Project. Chem. Geol. 169, 187–209 (2000).

  64. 64.

    Xu, G., Frey, F. A., Clague, D. A., Weis, D. & Beeson, M. H. East Molokai and other Kea-trend volcanoes: magmatic processes and sources as they migrate away from the Hawaiian hot spot. Geochem. Geophys. Geosys. 6, Q05008 (2005).

  65. 65.

    Blichert-Toft, J., Frey, F. A. & Albarède, F. Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science 285, 879–882 (1999).

  66. 66.

    Blichert-Toft, J. & Albarède, F. Hf isotopic compositions of the Hawaii Scientific Drilling Project core and the source mineralogy of Hawaiian basalts. Geophys. Res. Lett. 26, 935–938 (1999).

  67. 67.

    Eisele, J., Abouchami, W., Galer, S. J. G. & Hofmann, A. W. The 320 kyr Pb isotope evolution of Mauna Kea lavas recorded in the HSDP-2 drill core. Geochem. Geophys. Geosys. 4, 8710 (2003).

  68. 68.

    Blichert-Toft., J., Weis, D., Maerschalk, C., Agranier, A. & Albarède, F. Hawaiian hot spot dynamics as inferred from the Hf and Pb isotope evolution of Mauna Kea volcano. Geochem. Geophys. Geosys. 4, 8710 (2003).

  69. 69.

    Bryce, J. G., DePaolo, D. J. & Lassiter, J. C. Geochemical structure of the Hawaiian plume: Sr, Nd, and Os isotopes in the 2.8 km HSDP-2 section of Mauna Kea volcano. Geochem. Geophys. Geosys. 6, Q09G18 (2005).

  70. 70.

    Chen, C. Y., Frey, F. A. & Garcia, M. O. Evolution of alkalic lavas at Haleakala Volcano, east Maui, Hawaii—major, trace element and isotopic constraints. Contrib. Mineral. Petrol. 105, 197–218 (1990).

  71. 71.

    Chen, C. Y., Frey, F. A., Garcia, M. O., Dalrymple, G. B. & Hart, S. R. The tholeiite to alkalic basalt transition at Haleakala Volcano, Maui, Hawaii. Contrib. Mineral. Petrol. 106, 183–200 (1991).

  72. 72.

    Chen, C. Y., Frey, F. A., Rhodes, J. M. & Easton, R. M. Temporal geochemical evolution of Kilauea Volcano: comparison of Hilina and Puna basalt. Geophys. Monogr. Ser. 95, 161–181 (1995).

  73. 73.

    Easton, R. & Garcia, M. Petrology of the Hilina formation, Kīlauea Volcano, Hawai’i. Bull. Volcanol. 43, 657–673 (1980).

  74. 74.

    Gaffney, A. M., Nelson, B. K. & Blichert-Toft, J. Geochemical constraints on the role of oceanic lithospere in intra-volcano heterogeneity at West Maui, Hawaii. J. Petrol. 45, 1663–1687 (2004).

  75. 75.

    Gaffney, A. M., Nelson, B. K. & Blichert-Toft, J. Melting in the Hawaiian plume at 1–2 Ma as recorded at Maui Nui: the role of eclogite, peridotite, and source mixing. Geochem. Geophys. Geosys. 6, Q10L11 (2005).

  76. 76.

    Garcia, M. O., Rhodes, J. M., Trusdell, F. A. & Pietruszka, A. J. Petrology of lavas from the Puu Oo eruption of Kilauea Volcano: III. The Kupaianaha episode (1986–1992). Bull. Volcanol. 58, 359–379 (1996).

  77. 77.

    Garcia, M. O., Pietruszka, A. J., Rhodes, J. M. & Swanson, K. Magmatic processes during the prolonged Pu’u’O’o eruption of Kilauea Volcano, Hawaii. J. Petrol. 41, 967–990 (2000).

  78. 78.

    Hofmann, A. W., Feigenson, M. D. & Raczek, I. Case studies on the origin of basalt: III. Petrogenesis of the Mauna Ulu eruption, Kilauea, 1969–1971. Contrib. Mineral. Petrol. 88, 24–35 (1984).

  79. 79.

    Wright, T. L., Swanson, D. A. & Duffield, W. A. Chemical compositions of Kilauea east rift lava, 1968–1971. J. Petrol. 16, 110–133 (1975).

  80. 80.

    Hofmann, A. W., Feigenson, M. D. & Raczek, I. Kohala revisited Contrib. Mineral. Petrol. 95, 114–122 (1987).

  81. 81.

    Norman, M. D. & Garcia, M. O. Primitive magmas and source characteristics of the Hawaiian plume: petrology and geochemistry of shield picrites. Earth Planet. Sci. Lett. 168, 27–44 (1999).

  82. 82.

    Pietruszka, A. J. & Garcia, M. O. A rapid fluctuation in the mantle source and melting history of Kilauea Volcano inferred from the geochemistry of its historical summit lavas (1790–1982). J. Petrol. 40, 1321–1342 (1999).

  83. 83.

    Rhodes, J. M. Geochemical stratigraphy of lava flows sampled by the Hawaii Scientific Drilling Project. J. Geophys. Res. 101, 11729–11746 (1996).

  84. 84.

    Rhodes, J. M. & Vollinger, M. J. Composition of basaltic lavas sampled by phase-2 of the Hawaii Scientific Drilling Project: geochemical stratigraphy and magma types. Geochem. Geophys. Geosys. 5, Q03G13 (2004).

  85. 85.

    Sims, K. W. W. et al. Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: inferences from 238U–230Th–226Ra and 235U–231Pa disequilibria. Geochim. Cosmochim. Acta 63, 4119–4138 (1999).

  86. 86.

    Stille, P., Unruh, D. M. & Tatsumoto, M. Pb, Sr, Nd, and Hf isotopic constraints on the origin of Hawaiian basalts and evidence for a unique mantle source. Geochim. Cosmochim. Acta 50, 2303–2319 (1986).

  87. 87.

    Tanaka, R., Makishima, A. & Nakamura, E. Hawaiian double volcanic chain triggered by an episodic involvement of recycled material: constraints from temporal Sr–Nd–Hf–Pb isotopic trend of the Loa-type volcanoes. Earth Planet. Sci. Lett. 265, 450–465 (2008).

  88. 88.

    West, H. B., Gerlach, D. C., Leeman, W. P. & Garcia, M. O. Isotopic constraints on the origin of Hawaiian lavas from the Maui Volcanic Complex, Hawaii. Nature 330, 216–220 (1987).

  89. 89.

    Xu, G. et al. Geochemical characteristics of West Molokai shield- and postshield-stage lavas: constraints on Hawaiian plume models. Geochem. Geophys. Geosys. 8, Q08G21 (2007).

  90. 90.

    Basu, A. R. & Faggart, B. E. Temporal isotopic variations in the Hawaiian mantle plume: the Lanai anomaly, the Molokai Fracture Zone and a seawater-altered lithospheric component in Hawaiian volcanism. Geophys. Monogr. Ser. 95, 149–159 (1995).

  91. 91.

    Leeman, W. P., Gerlach, D. C., Garcia, M. O. & West, H. B. Geochemical variations in lavas from Kahoolawe volcano, Hawaii: evidence for open system evolution of plume-derived magmas. Contrib. Mineral. Petrol. 116, 62–77 (1994).

  92. 92.

    Huang, S. et al. Enriched components in the Hawaiian plume: evidence from Kahoolawe volcano, Hawaii. Geochem. Geophys. Geosys. 6, Q11006 (2005).

  93. 93.

    Huang, S. et al. Ancient carbonate sedimentary signature in the Hawaiian plume: evidence from Mahukona Volcano, Hawaii. Geochem. Geophys. Geosys. 10, Q08002 (2009).

  94. 94.

    Valbracht, P. J., Staudigel, H., Honda, M., McDougall, I. & Davies, G. F. Isotopic tracing of volcanic source regions from Hawaii: decoupling of gaseous from lithophile magma components. Earth Planet. Sci. Lett. 144, 185–198 (1996).

  95. 95.

    Clague, D. A. Hawaiian alkaline volcanism. Geol. Soc. 30, 227–252 (1987).

  96. 96.

    Bennett, V. C., Esat, T. M. & Norman, M. D. Two mantle-plume components in Hawaiian picrites inferred from correlated Os–Pb isotopes. Nature 381, 221–224 (1996).

  97. 97.

    Stracke, A., Salters, V. J. M. & Sims, K. W. W. Assessing the presence of garnet–pyroxenite in the mantle sources of basalts through combined hafnium–neodymium–thorium isotope systematics. Geochem. Geophys. Geosys. 1, 1006 (2000).

  98. 98.

    Cousens, B. L., Clague, D. A. & Sharp, W. D. Chronology, chemistry, and origin of trachytes from Hualalai Volcano, Hawaii. Geochem. Geophys. Geosys. 4, 1078 (2003).

  99. 99.

    Lassiter, J. C. & Hauri, E. H. Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet. Sci. Lett. 164, 483–496 (1998).

  100. 100.

    Garcia, M. O., Foss, D. J. P., West, H. B. & Mahoney, J. J. Geochemical and isotopic evolution of Loihi volcano, Hawaii. J. Petrol. 36, 1647–1671 (1995).

  101. 101.

    Hauri, E. H., Lassiter, J. C. & DePaolo, D. J. Osmium isotope systematics of drilled lavas from Mauna Loa, Hawaii. J. Geophys. Res. Solid Earth 101, 11793–11806 (1996).

  102. 102.

    Rhodes, J. M. & Hart, S. R. Episodic trace element and isotopic variations in historical Mauna Loa lavas: implications for magma and plume dynamics. Geophys. Monogr. Ser. 92, 263–288 (1995).

  103. 103.

    Kurz, M. D., Kenna, T. C., Kammer, D. P., Rhodes, J. M. & Garcia, O. Isotopic evolution of Mauna Loa Volcano: a view from the submarine Southwest Rift Zone. Geophys. Monogr. Ser. 92, 289–306 (1995).

  104. 104.

    Cohen, A. S., Keith O’Nions, R. & Kurz, M. D. Chemical and isotopic variations in Mauna Loa tholeiites. Earth Planet. Sci. Lett. 143, 111–124 (1996).

  105. 105.

    Garcia, M. O., Ito, E., Eiler, J. M. & Pietruszka, A. J. Crustal contamination of Kilauea Volcano magmas revealed by oxygen isotope analyses of glass and olivine from Puu Oo eruption lavas. J. Petrol. 39, 803–817 (1998).

  106. 106.

    Garcia, M. O., Jorgenson, B. A., Mahoney, J. J., Ito, E. & Irving, A. J. An evaluation of temporal geochemical evolution of Loihi summit lavas: results from Alvin submersible dives. J. Geophys. Res. 98, 537–550 (1993).

  107. 107.

    Frey, F. A., Garcia, M. O. & Roden, M. F. Geochemical characteristics of Koolau Volcano: implications of intershield geochemical differences among Hawaiian volcanoes. Geochim. Cosmochim. Acta 58, 1441–1462 (1994).

  108. 108.

    Roden, M. F., Trull, T., Hart, S. R. & Frey, F. A. New He, Nd, Pb, and Sr isotopic constraints on the constitution of the Hawaiian plume: results from Koolau Volcano, Oahu, Hawaii, USA. Geochim. Cosmochim. Acta 58, 1431–1440 (1994).

  109. 109.

    Stille, P., Unruh, D. M. & Tatsumoto, M. Pb, Sr, Nd and Hf isotopic evidence of multiple sources for Oahu, Hawaii basalts. Nature 304, 25–29 (1983).

  110. 110.

    Haskins, E. H. & Garcia, M. O. Scientific drilling reveals geochemical heterogeneity within the Ko’olau shield, Hawai’i. Contrib. Mineral. Petrol. 147, 162–188 (2004).

  111. 111.

    Salters, V. J. M., Blichert-Toft, J., Fekiacova, Z., Sachi-Kocher, A. & Bizimis, M. Isotope and trace element evidence for depleted lithosphere in the source of enriched Ko’olau basalts. Contrib. Mineral. Petrol. 151, 297–312 (2006).

  112. 112.

    Jackson, M. C., Frey, Fa, Garcia, M. O. & Wilmoth, R. A. Geology and geochemistry of basaltic lava flows and dykes from the Trans-Loolau tunnel, Oahu, Hawaii. Bull. Volcanol. 60, 381–401 (1999).

  113. 113.

    Reiners, P. W. & Nelson, B. K. Temporal–compositional–isotopic trends in rejuvenated-stage magmas of Kauai, Hawaii, and implications for mantle melting processes. Geochim. Cosmochim. Acta 62, 2347–2368 (1998).

  114. 114.

    Cousens, B. L. & Clague, D. A. Shield to rejuvenated-stage volcanism on Kauai and Niihau, Hawaiian Islands. J. Petrol. 56, 1547–1584 (2014).

  115. 115.

    Clague, D. A. & Dalrymple, G. B. Age and petrology of alkalic postshield and rejuvenated-stage lava from Kauai, Hawaii. Contrib. Mineral. Petrol. 99, 202–218 (1988).

  116. 116.

    Castillo, P. R., Natland, J. H., Niu, Y. & Lonsdale, P. F. Sr, Nd and Pb isotopic variation along the Pacific–Antarctic risecrest, 53–57° S: implications for the composition and dynamics of the South Pacific upper mantle. Earth Planet. Sci. Lett. 154, 109–125 (1998).

  117. 117.

    Castillo, P. R. et al. Petrology and Sr, Nd, and Pb isotope geochemistry of mid-ocean ridge basalt glasses from the 11° 45′ N to 15° 00′ N segment of the East Pacific Rise. Geochem. Geophys. Geosys. 1, 1011 (2000).

  118. 118.

    Chauvel, C. & Blichert-Toft, J. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet. Sci. Lett. 190, 137–151 (2001).

  119. 119.

    Niu, Y. L., Collerson, K. D., Batiza, R., Wendt, J. I. & Regelous, M. Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: the East Pacific Rise at 11° 20′ N. Geophys. Res. Earth 104, 7067–7087 (1999).

  120. 120.

    Sims, K. W. W. et al. Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochim. Cosmochim. Acta 66, 3481–3504 (2002).

  121. 121.

    Sims, K. W. W. et al. Aberrant youth: chemical and isotopic constraints on the origin of off-axis lavas from the East Pacific Rise, 9°–10° N. Geochem. Geophys. Geosys. 4, 8621 (2003).

  122. 122.

    Wendt, J. I., Regelous, M., Niu, Y., Hékinian, R. & Collerson, K. D. Geochemistry of lavas from the Garrett Transform Fault: insights into mantle heterogeneity beneath the eastern Pacific. Earth Planet. Sci. Lett. 173, 271–284 (1999).

  123. 123.

    Goss, A. R. et al. Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46′ N–9° 56′ N: implications for ridge crest plumbing and decadal changes in magma chamber compositions. Geochem. Geophys. Geosys. 11, Q05T09 (2010).

  124. 124.

    Waters, C. L. et al. Sill to surface: linking young off-axis volcanism with subsurface melt at the overlapping spreading center at 9° 03′ N East Pacific Rise. Earth Planet. Sci. Lett. 369–370, 59–70 (2013).

  125. 125.

    Hahm, D., Castillo, P. R. & Hilton, D. R. A deep mantle source for high 3He/4He ocean island basalts (OIB) inferred from Pacific near-ridge seamount lavas. Geophys. Res. Lett. 36, L20316 (2009).

  126. 126.

    Hamelin, C., Dosso, L., Hanan, B., Barrat, J. A. & Ondréas, H. Sr–Nd–Hf isotopes along the Pacific Antarctic Ridge from 41 to 53° S. Geophys. Res. Lett. 37, L10303 (2010).

  127. 127.

    Hamelin, C. et al. Geochemical portray of the Pacific Ridge: new isotopic data and statistical techniques. Earth Planet. Sci. Lett. 302, 154–162 (2011).

  128. 128.

    Hanan, B. B. & Schilling, J. G. Easter Microplate evolution: Pb isotope evidence. J. Geophys. Res. 94, 7432–7448 (1989).

  129. 129.

    Fontignie, D. & Schilling, J. G. 87Sr86Sr and REE variations along the Easter Microplate boundaries (south Pacific): application of multivariate statistical analyses to ridge segmentation. Chem. Geol. 89, 209–241 (1991).

  130. 130.

    Kingsley, R. H., Blichert-Toft, J., Fontignie, D. & Schilling, J. G. Hafnium, neodymium, and strontium isotope and parent–daughter element systematics in basalts from the plume–ridge interaction system of the Salas y Gomez Seamount Chain and Easter Microplate. Geochem. Geophys. Geosys. 8, Q04005 (2007).

  131. 131.

    Kempton, P. D. et al. Sr–Nd–Pb–Hf isotope results from ODP Leg 187: evidence for mantle dynamics of the Australian–Antarctic Discordance and origin of the Indian MORB source. Geochem., Geophys., Geosys. 3, 1074 (2002).

  132. 132.

    Klein, E. M., Langmuir, C. H., Zindler, A., Staudigel, H. & Hamelin, B. Isotope evidence of a mantle convection boundary at the Australian–Antarctic Discordance. Nature 333, 623–629 (1988).

  133. 133.

    Salters, V. J. M. The generation of mid-ocean ridge basalts from the Hf and Nd isotope perspective. Earth Planet. Sci. Lett. 141, 109–123 (1996).

  134. 134.

    Mahoney, J. J., Storey, M., Duncan, R. A., Spencer, K. J. & Pringle, M. in The Mesozoic Pacific: Geology, Tectonics, and Volcanism (eds Pringle, M., Sager, W. W., Sliter, W. V. & Stein, S.) 233–261 (American Geophysical Union, 1993).

  135. 135.

    Hanan, B., Blichert-Toft, J., Pyle, D. & Christie, D. Contrasting origins of the upper mantle MORB source revealed by Hf and Pb isotopes from the Australian–Antarctic Discordance. Geochim. Cosmochim. Acta 68, A553– (2004).

  136. 136.

    Niu, Y., Waggoner, D. G., Sinton, J. M. & Mahoney, J. J. Mantle source heterogeneity and melting processes beneath seafloor spreading centers: the East Pacific Rise, 18 °–19° S. J. Geophys. Res. 101, 27711–27733 (1996).

  137. 137.

    Nowell, G. M. et al. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chem. Geol. 149, 211–233 (1998).

  138. 138.

    Lawson, K., Searle, R. C., Pearce, J. A., Browning, P. & Kempton, P. Detailed volcanic geology of the MARNOK area, Mid-Atlantic Ridge north of Kane Transform. Geol. Soc. 118, 61–102 (1996).

  139. 139.

    Pyle, D. G., Christie, D. M. & Mahoney, J. J. Resolving an isotopic boundary within the Australian–Antarctic Discordance. Earth Planet. Sci. Lett. 112, 161–178 (1992).

  140. 140.

    Clague, D. A., Holcomb, R. T., Sinton, J. M., Detrick, R. S. & Torresan, M. E. Pliocene and Pleistocene alkalic flood basalts on the seafloor north of the Hawaiian islands. Earth Planet. Sci. Lett. 98, 175–191 (1990).

  141. 141.

    Clague, D. A. & Frey, F. A. Petrology and trace element geochemistry of the Honolulu Volcanics, Oahu: implications for the oceanic mantle below Hawaii. J. Petrol. 23, 447–504 (1982).

  142. 142.

    Klaver, M. et al. Temporal and spatial variations in provenance of Eastern Mediterranean Sea sediments: implications for Aegean and Aeolian arc volcanism. Geochim. Cosmochim. Acta 153, 149–168 (2015).

  143. 143.

    Lee, C. T. A., Leeman, W. P., Canil, D. & Li, Z. X. A. Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J. Petrol. 46, 2313–2336 (2005).

Download references


This project was supported by NSF grants EAR-1524387 and NSF Ocean Sciences grant no. 1355932. C.D. acknowledges the UNLV Department of Geoscience for support through the Jack and Fay Ross fellowship.

Author information


  1. University of Nevada, Las Vegas, Las Vegas, NV, USA

    • C. DeFelice
    •  & S. Huang
  2. Brown University, Providence, RI, USA

    • S. Mallick
    •  & A. E. Saal


  1. Search for C. DeFelice in:

  2. Search for S. Mallick in:

  3. Search for A. E. Saal in:

  4. Search for S. Huang in:


C.D. and S.M. were responsible for the geochemical and isotopic measurements. All of the authors contributed to the data interpretation and model calculations and wrote the paper.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to C. DeFelice or S. Huang.

Supplementary information

  1. Supplementary Information

    Supplementary Figs. 1–5.

  2. Supplementary Table 1

    Radiogenic isotope ratios of high-CaO basalts from HSDP.

  3. Supplementary Table 2

    Major and trace element concentrations of high-CaO basalts from HSDP, analysed by ICP-MS at the University of Nevada, Las Vegas. All oxides are reported in wt% and trace elements are in ppm.

  4. Supplementary Table 3

    Radiogenic isotope ratios for blind duplicate samples and the original measurements of high-CaO basalts, and two HSDP samples analysed, Sr860-8.10 and Sr07613.23, refs 62,64–66.

  5. Supplementary Table 4

    Mineral modes, melt reactions and mineral partition coefficients used for the non-modal batch partial melting model. Mineral modes and melt reactions are of a garnet peridotite from ref. 141. Sc and V partition coefficients calculated based on ref. 45. DM starting concentrations from ref. 52. Sc and V starting composition from ref. 143. Partition coefficients from ref. 12, and if not listed, are calculated from the average of their neighbouring elements.

About this article

Publication history