Article | Published:

Eleven phases of Greenland Ice Sheet shelf-edge advance over the past 2.7 million years


The reconstruction of former ice sheets is important for testing Earth system models that can assess interactions between polar ice sheets and global climate, but information retrieved from contemporary glaciated margins is sparse. In particular, we need to know when ice sheets began to form marine outlets and the mechanisms by which they advance and retreat over timescales from decades to millions of years. Here, we use a dense grid of high-quality two-dimensional seismic reflection data to examine the stratigraphy and evolution of glacial outlets, or palaeo-ice streams, that drained the northwest Greenland Ice Sheet into Baffin Bay. Seismic horizons are partly age constrained by correlation with cores from drill sites. Progradational units separated by onlap surfaces record 11 major phases of shelf-edge ice advance and subsequent transgression since the first ice-sheet expansion 3.3–2.6 million years ago. The glacial outlet system appears to have developed in four stages, each potentially caused by tectonic and climatic changes. We infer that an abrupt change in ice-flow conditions occurred during the mid-Pleistocene transition, about 1 million years ago, when ice movement across the shelf margin changed from widespread to a more focused flow (ice streams), forming the present-day glacial troughs.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

All seismic data that support the findings of this study are publicly available by request from the GEUS data department (

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Overpeck, J. T. et al. Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311, 1747–1750 (2006).

  2. 2.

    Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503 (2011).

  3. 3.

    Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat Clim. Change 5, 475–480 (2015).

  4. 4.

    Koenig, S. J. et al. Ice sheet model dependency of the simulated Greenland Ice Sheet in the mid-Pliocene. Clim. Past 11, 369–381 (2015).

  5. 5.

    Schaefer, J. M. et al. Greenland was nearly ice-free for extended periods during the Pleistocene. Nature 540, 252–255 (2016).

  6. 6.

    Bierman, P. R., Shakun, J. D., Corbett, L. B., Zimmerman, S. R. & Rood, D. H. A persistent and dynamic East Greenland ice sheet over the past 7.5 million years. Nature 540, 256–260 (2016).

  7. 7.

    Larter, R. D. & Barker, P. F. Seismic stratigraphy of the Antarctic Peninsula Pacific margin—a record of Pliocene-Pleistocene ice volume and paleoclimate. Geology 17, 731–734 (1989).

  8. 8.

    Cooper, A. K. et al. Cenozoic prograding sequences of the Antarctic continental margin: a record of glacio-eustatic and tectonic events. Mar. Geol. 102, 175–213 (1991).

  9. 9.

    Vorren, T. O. & Laberg, J. S. Trough mouth fans—palaeoclimate and ice-sheet monitors. Quat. Sci. Rev. 16, 865–881 (1997).

  10. 10.

    Denton, G. H. & Hughes, T. The Last Great Ice Sheets (Wiley, 1981).

  11. 11.

    Jakobsson, M. et al. The international bathymetric chart of the arctic ocean (IBCAO) version 3.0.Geophys. Res. Lett. 39, L12609 (2012).

  12. 12.

    Slabon, P. et al. Greenland ice sheet retreat history in the northeast Baffin Bay based on high-resolution bathymetry. Quat. Sci. Rev. 154, 182–198 (2016).

  13. 13.

    Newton, A. M. W. et al. Ice stream reorganization and glacial retreat on the northwest Greenland shelf. Geophys. Res. Lett. 44, 7826–7835 (2017).

  14. 14.

    Laberg, J. S. & Vorren, T. O. Late Weichselian submarine debris flow deposits on the Bear Island Trough Mouth Fan. Mar. Geol. 127, 45–72 (1995).

  15. 15.

    Ó Cofaigh, C. et al. Timing and significance of glacially influenced mass-wasting in the submarine channels of the Greenland Basin. Mar. Geol. 207, 39–54 (2004).

  16. 16.

    Batchelor, C. L. & Dowdeswell, J. A. Ice-sheet grounding-zone wedges (GZWs) on high-latitude continental margins. Mar. Geol. 363, 65–92 (2015).

  17. 17.

    Dowdeswell, J. A. & Fugelli, E. M. G. The seismic architecture and geometry of grounding-zone wedges formed at the marine margins of past ice sheets. Geol. Soc. Am. Bull. 124, 1750–1761 (2012).

  18. 18.

    Alley, R. B., Anandakrishnan, S., Dupont, T. K., Parizek, B. R. & Pollard, D. Effect of sedimentation on ice-sheet grounding-line stability. Science 315, 1838–1841 (2007).

  19. 19.

    Dowdeswell, J. A., Ottesen, D., Rise, L. & Craig, J. Identification and preservation of landforms diagnostic of past ice-sheet activity on continental shelves from three-dimensional seismic evidence. Geology 35, 359–362 (2007).

  20. 20.

    Belknap, D. F. & Shipp, R. C. in Glacial Marine Sedimentation; Paleoclimatic Significance (eds Anderson, J. B. & Ashley, G. M.) 137–157 (Geological Society of America, 1991).

  21. 21.

    Gregersen, U., Hopper, J. R. & Knutz, P. C. Basin seismic stratigraphy and aspects of prospectivity in the NE Baffin Bay, Northwest Greenland. Mar. Petrol. Geol. 46, 1–18 (2013).

  22. 22.

    Knutz, P. C., Hopper, J. R., Gregersen, U., Nielsen, T. & Japsen, P. A contourite drift system on the Baffin Bay-West Greenland margin linking Pliocene Arctic warming to poleward ocean circulation. Geology 43, 907–910 (2015).

  23. 23.

    Jansen, E., Fronval, T., Rack, F. & Channell, J. E. T. Pliocene-Pleistocene ice rafting history and cyclicity in the Nordic Seas during the last 3.5 Myr. Paleoceanography 15, 709–721 (2000).

  24. 24.

    Wolf, T. C. W. & Thiede, J. History of terrigenous sedimentation during the past 10 m.y. in the North Atlantic (ODP Legs 104 and 105 and DSDP Leg 81). Mar. Geol. 101, 83–102 (1991).

  25. 25.

    Hodell, D. A. & Channell, J. E. T. Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in quaternary climate. Clim. Past 12, 1805–1828 (2016).

  26. 26.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1–17 (2005).

  27. 27.

    Acton, G. & Expedition Members Expedition 344S. In Proc. Baffin Bay Scientific Coring Program (International Ocean Discovery Program, 2012).

  28. 28.

    Clausen, L. The Southeast Greenland glaciated margin: 3D stratal architecture of shelf and deep sea. Geol. Soc. Lond. Spec. Publ. 129, 173–203 (1998).

  29. 29.

    Rebesco, M., Larter, R. D., Camerlenghi, A. & Barker, P. F. Giant sediment drifts on the continental rise west of the Antarctic Peninsula. Geo. Mar. Lett. 16, 65–75 (1996).

  30. 30.

    Alley, R. B. et al. How glaciers entrain and transport basal sediment: physical constraints. Quat. Sci. Rev. 16, 1017–1038 (1997).

  31. 31.

    Stokes, C. R. & Clark, C. D. Palaeo-ice streams. Quat. Sci. Rev. 20, 1437–1457 (2001).

  32. 32.

    Boulton, G. S., Dongelmans, P., Punkari, M. & Broadgate, M. Palaeoglaciology of an ice sheet through a glacial cycle. Quat. Sci. Rev. 20, 591–625 (2001).

  33. 33.

    Shabtaie, S. & Bentley, C. R. West Antarctic ice streams draining into the Ross Ice Shelf—configuration and mass balance. J. Geophys. Res. Solid Earth 92, 1311–1336 (1987).

  34. 34.

    Ottesen, D., Rise, L., Andersen, E. S., Bugge, T. & Eidvin, T. Geological evolution of the Norwegian continental shelf between 61°N and 68°N during the last 3 million years. Norw. J. Geol. 89, 251–265 (2009).

  35. 35.

    Margold, M., Stokes, C. R. & Clark, C. D. Ice streams in the Laurentide Ice Sheet: identification, characteristics and comparison to modern ice sheets. Earth Sci. Rev. 143, 117–146 (2015).

  36. 36.

    Mcintyre, N. F. The dynamics of ice-sheet outlets. J. Glaciol. 31, 99–107 (1985).

  37. 37.

    Miller, K. G., Mountain, G. S., Wright, J. D. & Browning, J. V. A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography 24, 40–53 (2011).

  38. 38.

    Clark, P. U. & Pollard, D. Origin of the middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography 13, 1–9 (1998).

  39. 39.

    Ruddiman, W. F. Orbital changes and climate. Quat. Sci. Rev. 25, 3092–3112 (2006).

  40. 40.

    Crowley, T. J. Cycles, cycles everywhere. Science 295, 1473–1474 (2002).

  41. 41.

    Raymo, M. E., Lisiecki, L. E. & Nisancioglu, K. H. Plio-pleistocene ice volume, Antarctic climate, and the global δ18O record. Science 313, 492–495 (2006).

  42. 42.

    Chalk, T. B. et al. Causes of ice age intensification across the mid-Pleistocene transition. Proc. Natl Acad. Sci. USA 114, 13114–13119 (2017).

  43. 43.

    Funder, S. et al. Late Pliocene Greenland—the Kap København Formation in North Greenland. Bull. Geol. Soc. Den. 48, 117–134 (2001).

  44. 44.

    Bennike, O. et al. Early Pleistocene sediments on Store Koldewey, northeast Greenland. Boreas 39, 603–619 (2010).

  45. 45.

    Melles, M. et al. 2.8 million years of Arctic climate change from Lake El’gygytgyn, NE Russia. Science 337, 315–320 (2012).

  46. 46.

    Reyes, A. V. et al. South Greenland ice-sheet collapse during marine isotope stage 11. Nature 510, 525–528 (2014).

  47. 47.

    Mitchum, R. M., Vail, P. R. & Sangree, J. B. in Seismic Stratigraphy—Applications to Hydrocarbon Exploration (ed. Payton, C. E.) 117–133 (American Association of Petroleum Geologists, 1977).

  48. 48.

    Geissler, W. H. & Jokat, W. A geophysical study of the northern Svalbard continental margin. Geophys. J. Int. 158, 50–66 (2004).

  49. 49.

    Geissler, W. H., Jokat, W. & Brekke, H. The Yermak Plateau in the Arctic Ocean in the light of reflection seismic data—implication for its tectonic and sedimentary evolution. Geophys. J. Int. 187, 1334–1362 (2011).

  50. 50.

    Joughin, I., Smith, B. E., Howat, I. M., Scambos, T. & Moon, T. Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol. 56, 415–430 (2010).

  51. 51.

    A Biostratigraphic Evaluation of Delta-1 and Gamma-1, West Disko Licence Area, West Greenland (Cairn-Ichron, 2012).

  52. 52.

    de Vernal, A. & Mudie, P. J. Pliocene and Pleistocene palynostratigraphy at ODP Sites 646 and 647, eastern and southern Labrador Sea. In Proc. ODP Vol. 105 (eds Srivastava, S. P. et al.) 401–422 (Ocean Drilling Program, 1989).

  53. 53.

    Piasecki, S. Neogene dinoflagellate cysts from Davis Strait, offshore West Greenland. Mar. Petrol. Geol. 20, 1075–1088 (2003).

  54. 54.

    Fensome, R. A., Nøhr-Hansen, H. & Williams, G. L. Cretaceous and Cenozoic dinoflagellate cysts and other palynomorphs from the western and eastern margins of the Labrador-Baffin seaway. Geol. Surv. Den. Greenl. 36, 143 (2016).

  55. 55.

    De Schepper, S. & Head, M. J. Pliocene and Pleistocene dinoflagellate cyst and acritarch zonation of DSDP hole 610a, Eastern North Atlantic. Palynology 33, 179–218 (2009).

  56. 56.

    Verhoeven, K., Louwye, S., Eiriksson, J. & De Schepper, S. A new age model for the Pliocene-Pleistocene Tjornes section on Iceland: its implication for the timing of North Atlantic-Pacific palaeoceanographic pathways. Palaeogeogr. Palaeoclimatol. Palaeoecol. 309, 33–52 (2011).

  57. 57.

    Dybkjær, K. & Piasecki, S. A new neogene biostratigraphy for Denmark. Geol. Surv. Den. Greenl. 15, 29–32 (2008).

  58. 58.

    Feyling-Hanssen, R. Foraminiferal stratigraphy in the Plio-Pleistocene Kap København Formation, North Greenland. Meddr. Gronland 24, 3–36 (1990).

  59. 59.

    Feyling-Hanssen, R., Funder, S. & Strand Petersen, K. The Lodin Elv Formation, a Plio-Pleistocene occurrence in Greenland. Bull. Geol. Soc. Den. 31, 81–106 (1982).

  60. 60.

    Gradstein, F. & S., B. Cainozoic bathymetry and palaeobathymetry, northern North Sea and Haltenbanken. Norsk Geol. Tidsskr. 76, 3–32 (1996).

  61. 61.

    King, C. in Stratigraphical Atlas of Fossil Foraminifera (eds Jenkins, D. G. & Murray, J. W.) 418–489 (Ellis Horwood, 1989).

  62. 62.

    Hofmann, J. C., Knutz, P. C., Nielsen, T. & Kuijpers, A. Seismic architecture and evolution of the Disko Bay trough-mouth fan, central West Greenland margin. Quat. Sci. Rev. 147, 69–90 (2016).

  63. 63.

    Perez, L. F., Nielsen, T., Knutz, P. C., Kuijpers, A. & Damm, V. Large-scale evolution of the central-East Greenland margin: new insights to the North Atlantic glaciation history. Glob. Planet. Change 163, 141–157 (2018).

  64. 64.

    Laberg, J. S., Forwick, M., Husum, K. & Nielsen. A re-evaluation of the Pleistocene behavior of the Scoresby Sund sector of the Greenland Ice Sheet. Geology 41, 1231–1234 (2013).

  65. 65.

    Nielsen, T. & Kuijpers, A. Only 5 southern Greenland shelf edge glaciations since the early Pliocene. Sci. Rep. 3, 1875 (2013).

  66. 66.

    Richter, C., Maxwell, S. B., Acton, G. & Evans, H. F. High-latitude paleomagnetic records of Quaternary sediments from Baffin Bay, Western Greenland Margin. In American Geophysical Union Fall MeetingGP41E-03 (AGU, 2013).

  67. 67.

    Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G. The Geologic Time Scale (Elsevier, 2012).

  68. 68.

    Thiede, J. et al. Millions of years of Greenland ice sheet history recorded in ocean sediments. Polarforschung 80, 141–159 (2011).

Download references


TGS Geophysical Company is acknowledged for use of seismic data. A.M.W.N. was supported by the Natural Environmental Research Council (NERC grant reference number NE/K500859/1) and Cairn Energy for PhD funding.

Author information

The study was initiated and led by P.C.K. A.M.W.N. provided complementary results and contributed to the discussion. J.R.H. provided data for the depth conversion and contributed to the interpretation and discussion. M.H. contributed to the interpretation and discussion. U.G. provided input to the seismic interpretation. E.S. and K.D. contributed biostratigraphic analyses of industry well data.

Competing interests

The authors declare no competing interests.

Correspondence to Paul C. Knutz.

Supplementary information

Supplementary Information

Supplementary Figure and Tables

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Map of the study area with seismic lines and palaeo-shelf-break positions of glacigenic prograding units.
Fig. 2: Seismic transect NE–SW across the Melville Bugt TMF.
Fig. 3: Detailed seismic profiles.
Fig. 4: Seismic profile SE–NW across the Delta-1 drill site located south of the main study area .
Fig. 5: Correlation of the northwestern GrIS prograding system with regional and global climate proxies from 3.4 Ma to present.
Fig. 6: Thickness maps for each of the prograding units.