Plastic litter is an ever-increasing global issue and one of this generation’s key environmental challenges. Microplastics have reached oceans via river transport on a global scale. With the exception of two megacities, Paris (France) and Dongguan (China), there is a lack of information on atmospheric microplastic deposition or transport. Here we present the observations of atmospheric microplastic deposition in a remote, pristine mountain catchment (French Pyrenees). We analysed samples, taken over five months, that represent atmospheric wet and dry deposition and identified fibres up to ~750 µm long and fragments ≤300 µm as microplastics. We document relative daily counts of 249 fragments, 73 films and 44 fibres per square metre that deposited on the catchment. An air mass trajectory analysis shows microplastic transport through the atmosphere over a distance of up to 95 km. We suggest that microplastics can reach and affect remote, sparsely inhabited areas through atmospheric transport.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The authors confirm that all the data that underlie the results presented in this study are available within the Supplementary Information files and can be downloaded in conjunction with this paper.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Rosevelt, C., Los Huertos, M., Garza, C. & Nevins, H. M. Marine debris in central California: quantifying type and abundance of beach litter in Monterey Bay, CA. Mar. Pollut. Bull. 71, 299–306 (2013).

  2. 2.

    Plastics—the Facts 2014/2015: an Analysis of European Plastics Production, Demand and Waste Data (PlasticsEurope, 2015).

  3. 3.

    Plastics—the Facts 2017: an Analysis of the European Plastics Production, Demand and Waste Data (PlasticsEurope, 2017).

  4. 4.

    Song, Y. K. et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci. Technol. 51, 4368–4376 (2017).

  5. 5.

    da Costa, J. P. Micro- and nanoplastics in the environment: research and policymaking. Curr. Opin. Environ. Sci. Health 1, 12–16 (2018).

  6. 6.

    Mattsson, K., Hansson, L.-A. & Cedervall, T. Nano-plastics in the aquatic environment. Environ. Sci. Process. Impacts 17, 1712–1721 (2015).

  7. 7.

    Scheurer, M. & Bigalke, M. Microplastics in Swiss floodplain soils. Environ. Sci. Technol. 52, 3591–3598 (2018).

  8. 8.

    Hurley, R., Woodward, J. & Rothwell, J. J. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat. Geosci. 11, 251–257 (2018).

  9. 9.

    Gasperi, J. et al. Microplastics in air: are we breathing it in? Curr. Opin. Environ. Sci. Health 1, 1–5 (2018).

  10. 10.

    Dris, R. et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 221, 453–458 (2017).

  11. 11.

    Dris, R., Gasperi, J., Saad, M., Mirande, C. & Tassin, B. Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Mar. Pollut. Bull. 104, 290–293 (2016).

  12. 12.

    Cai, L. et al. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. Environ. Sci. Pollut. Res. 24, 24928–24935 (2017).

  13. 13.

    Corcoran, P. L. Environmental science processes and impacts benthic plastic debris in marine and fresh water environments. Environ. Sci. Process. Impacts 17, 1363–1369 (2015).

  14. 14.

    Zbyszewski, M., Corcoran, P. L. & Hockin, A. Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America. J. Great Lakes Res. 40, 288–299 (2014).

  15. 15.

    Zhang, K. et al. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China. Environ. Pollut. 219, 450–455 (2016).

  16. 16.

    Watkins, L., McGrattan, S., Sullivan, P. J. & Walter, M. T. The effect of dams on river transport of microplastic pollution. Sci. Total Environ. 664, 834–840 (2019).

  17. 17.

    Donnees Meteorologiques—Sud Ouest Bernadouze (Centre d’Etudes Spatiales de la Biosphere, 2018); http://www.cesbio.ups-tlse.fr/data_meteo/index.php?perma=1319145390

  18. 18.

    Demography (Institut National de la Statistique et des Etudes Economiques, accessed 24 June 2018); https://www.insee.fr/fr/statistiques/3293086?geo=COM-09334

  19. 19.

    Araujo, C. F., Nolasco, M. M., Ribeiro, A. M. P. & Ribeiro-Claro, P. J. A. Identification of microplastics using Raman spectroscopy: latest developments and future prospects. Water Res. 142, 426–440 (2018).

  20. 20.

    Zwaaftink, C. D. G. et al. Temporal and spatial variability of Icelandic dust emissions and atmospheric transport. Atmos. Chem. Phys. 17, 10865–10878 (2017).

  21. 21.

    Camarero, L., Bacardit, M., de Diego, A. & Arana, G. Decadal trends in atmospheric deposition in a high elevation station: effects of climate and pollution on the long-range flux of metals and trace elements over SW Europe. Atmos. Environ. 167, 542–552 (2017).

  22. 22.

    Marticorena, B. et al. Mineral dust over west and central Sahel: seasonal patterns of dry and wet deposition fluxes from a pluriannual sampling (2006–2012). J. Geophys. Res. Atmos. 122, 1338–1364 (2017).

  23. 23.

    Morales-Baquero, R., Pulido-Villen, E. & Reche, I. Chemical signature of Saharan dust on dry and wet atmospheric deposition in the south-western Mediterranean region. Tellus B 1, 1–12 (2013).

  24. 24.

    Schwikowski, M., Seibert, P., Baltensperger, U. & Gaggeler, H. W. A study of an outstanding Saharan dust event at the high-alpine site Jungfraujoch, Switzerland. Atmos. Environ. 29, 1829–1842 (1995).

  25. 25.

    Dessens, J. & Van Dinh, P. Frequent Saharan dust outbreaks north of the Pyrenees: a sign of a climatic change? Weather 45, 327–333 (1990).

  26. 26.

    van der Does, M., Knippertz, P., Zschenderlein, P., Giles Harrison, R. & Stuut, J.-B. W. The mysterious long-range transport of giant mineral dust particles. Sci. Adv. 4, eaau2768 (2018).

  27. 27.

    Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).

  28. 28.

    Norén, F. Small Plastic Particles in Coastal Swedish Waters (N-research, 2007).

  29. 29.

    Schindelin, J. et al. Fiji: an open-source platform for biological image analysis. Nat. Methods 9, 676–682 (2012).

  30. 30.

    Erni-Cassola, G., Gibson, M. I., Thompson, R. C. & Christie-Oleza, J. A. Lost, but found with Nile Red: a novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples. Environ. Sci. Technol. 51, 13641–13648 (2017).

  31. 31.

    Schymanski, D., Goldbeck, C., Humpf, H. U. & Fürst, P. Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res. 129, 154–162 (2018).

  32. 32.

    A European Strategy for Plastics in a Circular Economy (European Commission, 2018).

  33. 33.

    Magnusson, K. et al. Swedish Sources and Pathways for Microplastics to the Marine Environment: A Review of Existing Data (IVL Swedish Environmental Research Institute Ltd, 2016).

  34. 34.

    Dris, R. et al. Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles. Environ. Chem. 12, 539–550 (2015).

  35. 35.

    Shim, W. J., Hong, S. H. & Eo, S. in Microplastic Contamination in Aquatic Environments (ed. Zeng, E. Y.) 1–26 (Elsevier, Amsterdam, 2018).

  36. 36.

    Zender, C. S. Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology. J. Geophys. Res. 108, 4416 (2003).

  37. 37.

    Sanchez, E., Yague, C. & Gazetner, M. A. Planetary boundary layer energetics simulated from a regional climate model over Europe for present climate and climate change conditions. Geophys. Res. Lett. 34, L01709 (2007).

  38. 38.

    Imhof, H. K. et al. Pigments and plastic in limnetic ecosystems: a qualitative and quantitative study on microparticles of different size classes. Water Res. 98, 64–74 (2016).

  39. 39.

    Lenz, R., Enders, K., Stedmon, C. A., MacKenzie, D. M. A. & Nielsen, T. G. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar. Pollut. Bull. 100, 82–91 (2015).

  40. 40.

    Enders, K., Lenz, R., Stedmon, C. A. & Nielsen, T. G. Abundance, size and polymer composition of marine microplastics ≥10 μm in the Atlantic Ocean and their modelled vertical distribution. Mar. Pollut. Bull. 100, 70–81 (2015).

  41. 41.

    Käppler, A. et al. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal. Bioanal. Chem. 408, 8377–8391 (2016).

  42. 42.

    Song, Y. K. et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar. Pollut. Bull. 93, 202–209 (2015).

  43. 43.

    Digka, N., Tsangaris, C., Kaberi, H., Adamopoulou, A. & Zeri C. Proc. Int. Conf. Microplastic Pollution Mediterranean Sea (eds Cocca, M., Di Pace, E., Errico, M. E., Gentile, G. & Montarsolo, A.) 17–24 (Springer, Cham, 2018).

  44. 44.

    Wang, W., Ndungu, A. W., Li, Z. & Wang, J. Microplastics pollution in inland freshwaters of China: a case study in urban surface waters of Wuhan, China. Sci. Total Environ. 575, 1369–1374 (2017).

  45. 45.

    Klein, R. Laser Welding of Plastics: Materials, Processes and Industrial Applications 3–69 (John Wiley & Sons, Weinheim, 2012).

  46. 46.

    Löder, M. & Gerdts, G. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) (Springer, Cham, 2015).

  47. 47.

    Shim, W. J., Hong, S. H. & Eo, S. E. Identification methods in microplastic analysis: a review. Anal. Methods 9, 1384–1391 (2017).

  48. 48.

    Peeken, I. et al. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 9, 1–9 (2018).

  49. 49.

    Isobe, A., Uchida, K., Tokai, T. & Iwasaki, S. East Asian seas: a hot spot of pelagic microplastics. Mar. Pollut. Bull. 101, 618–623 (2015).

  50. 50.

    Menges, F. Spectragryph—Optical Imaging Software (2016); https://www.effemm2.de/spectragryph/

  51. 51.

    Khashaba, P. Y., Ali, H. R. H. & El-Wekil, M. M. A rapid Fourier transform infrared spectroscopic method for analysis of certain proton pump inhibitors in binary and ternary mixtures. Spectrochim. Acta A 190, 10–14 (2018).

  52. 52.

    Ševčík, R. & Mácová, P. Localized quantification of anhydrous calcium carbonate polymorphs using micro-Raman spectroscopy. Vib. Spectrosc. 95, 1–6 (2018).

  53. 53.

    Lagaron, J. M., Dixon, N. M., Reed, W., Pastor, J. M. & Kip, B. J. Morphological characterisation of the crystalline structure of cold-drawn HDPE used as a model material for the environmental stress cracking (ESC) phenomenon. Polymer 40, 2569–2586 (1999).

  54. 54.

    Draxler, R. R. & Hess, G. D. Description of the HYSPLIT4 Modelling System. NOAA Technical Memorandum ERL ARL-224 (Air Resources Laboratory, 2018); https://www.researchgate.net/publication/255682850_Description_of_the_HYSPLIT_4_modelling_system

  55. 55.

    Stein, A. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077 (2015).

  56. 56.

    Su, L., Yuan, Z., Fung, J. C. H. & Lau, A. K. H. A comparison of HYSPLIT backward trajectories generated from two GDAS datasets. Sci. Total Environ. 506–507, 527–537 (2015).

  57. 57.

    Ashrafi, K., Shafiepour-Motlagh, M., Aslemand, A. & Ghader, S. Dust storm simulation over Iran using HYSPLIT. J. Environ. Health Sci. Eng. 12, 9 (2014).

  58. 58.

    Reche, I., D'Orta, G., Mladenov, N,. Winget, D. M. & Suttle, C. A. Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 12, 1154–1162 (2018).

Download references


The data were funded and provided by the CNRS TRAM Project, ANR-15-CE01-0008, Observatoire Homme-Milieu Pyrénées Haut Vicdessos—LABEX DRIIHM ANR-11-LABX0010 and CESBIO. The research leading to these results has also received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. PCOFUND-GA-2013-609102, through the PRESTIGE programme coordinated by Campus France. The authors acknowledge that this work was carried out in the CMAC National Facility, housed within the University of Strathclyde’s Technology and Innovation Centre, who are funded with a UKRPIF (UK Research Partnership Institute Fund) capital award, SFC ref. H13054, from the Higher Education Funding Council for England (HEFCE).

Author information

Author notes

  1. These authors contributed equally: S. Allen, D. Allen.


  1. EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), ENSAT, UMR-CNRS 5245, Castanet Tolosan, France

    • Steve Allen
    • , Deonie Allen
    • , Gaël Le Roux
    • , Pilar Durántez Jiménez
    •  & Stéphane Binet
  2. Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK

    • Steve Allen
    •  & Vernon R. Phoenix
  3. ISTO, CNRS UMR 7327, Université d’Orléans, BRGM, Orléans, France

    • Anaëlle Simonneau
    •  & Stéphane Binet
  4. GEODE, UMR-CNRS 5602, Université Toulouse Jean Jaurès, Toulouse, France

    • Didier Galop


  1. Search for Steve Allen in:

  2. Search for Deonie Allen in:

  3. Search for Vernon R. Phoenix in:

  4. Search for Gaël Le Roux in:

  5. Search for Pilar Durántez Jiménez in:

  6. Search for Anaëlle Simonneau in:

  7. Search for Stéphane Binet in:

  8. Search for Didier Galop in:


S.A. and D.A. designed the study, undertook all the analyses and co-authored the manuscript. G.L.R. and V.R.P. provided the study design and analytical guidance and assisted in the preparation and revision of the manuscript. P.D. undertook all the field sampling and field protocol design, assisted in the sample preparation and contributed to the manuscript. A.S., S.B. and D.G. provided financial support and field site access that enabled this study to occur and contributed to the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Deonie Allen.

Supplementary information

  1. Supplementary Information

    Supplementary Description, Supplementary Figures 1–3 and Supplementary Table 1

  2. Supplementary Data

    Supplementary Dataset

About this article

Publication history