Climate control on banded iron formations linked to orbital eccentricity

Abstract

Astronomical forcing associated with Earth’s orbital and inclination parameters (Milankovitch forcing) exerts a major control on climate as recorded in the sedimentary rock record, but its influence in deep time is largely unknown. Banded iron formations, iron-rich marine sediments older than 1.8 billion years, offer unique insight into the early Earth’s environment. Their origin and distinctive layering have been explained by various mechanisms, including hydrothermal plume activity, the redox evolution of the oceans, microbial and diagenetic processes, sea-level fluctuations, and seasonal or tidal forcing. However, their potential link to past climate oscillations remains unexplored. Here we use cyclostratigraphic analysis combined with high-precision uranium–lead dating to investigate the potential influence of Milankovitch forcing on their deposition. Field exposures of the 2.48-billion-year-old Kuruman Banded Iron Formation reveal a well-defined hierarchical cycle pattern in the weathering profile that is laterally continuous over at least 250 km. The isotopic ages constrain the sedimentation rate at 10 m Myr−1 and link the observed cycles to known eccentricity oscillations with periods of 405 thousand and about 1.4 to 1.6 million years. We conclude that long-period, Milankovitch-forced climate cycles exerted a primary control on large-scale compositional variations in banded iron formations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Rhythmic alternations in the weathering profile of the Kuruman BIF.
Fig. 2: Weathering profile logs and cyclostratigraphic correlations.
Fig. 3: Spectral analysis results.
Fig. 4: U–Pb zircon ages and depositional rate.

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files. Raw data files of the weathering profile logs are available from the corresponding author upon request.

References

  1. 1.

    Klein, C. Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. Am. Mineral. 90, 1473–1499 (2005).

    Article  Google Scholar 

  2. 2.

    Bekker, A. et al. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 105, 467–508 (2010).

    Article  Google Scholar 

  3. 3.

    Morris, R. C. Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Res. 60, 243–286 (1993).

    Article  Google Scholar 

  4. 4.

    Isley, A. E. Hydrothermal plumes and the delivery of iron to banded iron formation. J. Geol. 103, 169–186 (1995).

    Article  Google Scholar 

  5. 5.

    Krapež, B., Barley, M. E. & Pickard, A. L. Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: sedimentological evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia. Sedimentology 50, 979–1011 (2003).

    Article  Google Scholar 

  6. 6.

    Viehmann, S., Bau, M., Hoffmann, J. E. & Münker, C. Geochemistry of the Krivoy Rog Banded Iron Formation, Ukraine, and the impact of peak episodes of increased global magmatic activity on the trace element composition of Precambrian seawater. Precambrian Res. 270, 165–180 (2015).

    Article  Google Scholar 

  7. 7.

    Trendall, A. F. The significance of iron-formation in the Precambrian stratigraphic record. Int. Assoc. Sedimentol. Spec. Publ. 33, 33–66 (2002).

    Google Scholar 

  8. 8.

    Barley, M. E., Bekker, A. & Krapež, B. Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 238, 156–171 (2005).

    Article  Google Scholar 

  9. 9.

    Konhauser, K. O. et al. Could bacteria have formed the Precambrian banded iron formations? Geology 30, 1079–1082 (2002).

    Article  Google Scholar 

  10. 10.

    Heimann, A. et al. Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments. Earth Planet. Sci. Lett. 294, 8–18 (2010).

    Article  Google Scholar 

  11. 11.

    Fischer, W. W. & Knoll, A. H. An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation. Geol. Soc. Am. Bull. 121, 222–235 (2009).

    Google Scholar 

  12. 12.

    Cloud, P. Paleoecological significance of the banded iron-formation. Econ. Geol. 68, 1135–1143 (1973).

    Article  Google Scholar 

  13. 13.

    Konhauser, K. O. et al. Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history. Earth Sci. Rev. 172, 140–177 (2017).

    Article  Google Scholar 

  14. 14.

    Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article  Google Scholar 

  15. 15.

    Trendall, A. F. & Blockley, J. B. The Iron Formations of the Precambrian Hamersley Group, Western Australia with Special Reference to the Associated Crocidolite (Geological Survey of Western Australia, 1970).

  16. 16.

    Beukes, N. J. Lithofacies and stratigraphy of the Kuruman and Griquatown iron-formations, northern Cape Province, South Africa. Trans. Geol. Soc. South Africa 83, 69–86 (1980).

    Google Scholar 

  17. 17.

    Trendall, A. F. Varve cycles in the Weeli Wolli Formation of the Precambrian Hamersley Group, Western Australia. Econ. Geol. 68, 1089–1097 (1973).

    Article  Google Scholar 

  18. 18.

    Posth, N. R., Hegler, F., Konhauser, K. O. & Kappler, A. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nat. Geosci. 1, 703–708 (2008).

    Article  Google Scholar 

  19. 19.

    Walker, J. C. G. & Zahnle, K. J. Lunar nodal tide and distance to the Moon during the Precambrian. Nature 320, 600–602 (1986).

    Article  Google Scholar 

  20. 20.

    Simonson, B. M. & Hassler, S. W. Was the deposition of large Precambrian iron formations linked to major marine transgressions? J. Geol. 104, 665–676 (1996).

    Article  Google Scholar 

  21. 21.

    Trendall, A. F., Compston, W., Nelson, D. R., De Laeter, J. R. & Bennett, V. C. SHRIMP zircon ages constraining the depositional chronology of the Hamersley Group, Western Australia. Aust. J. Earth Sci. 51, 621–644 (2004).

    Article  Google Scholar 

  22. 22.

    Pickard, A. L. SHRIMP U–Pb zircon ages for the Palaeoproterozoic Kuruman Iron Formation, Northern Cape Province, South Africa: evidence for simultaneous BIF deposition on Kaapvaal and Pilbara Cratons. Precambrian Res. 125, 275–315 (2003).

    Article  Google Scholar 

  23. 23.

    Beukes, N. J. Sedimentology of the Kuruman and Griquatown Iron-formations, Transvaal Supergroup, Griqualand West, South Africa. Precambrian Res. 24, 47–84 (1984).

    Article  Google Scholar 

  24. 24.

    Beukes, N. & Gutzmer, J. Origin and paleoenvironmental significance of major iron formations at the Archean–Paleoproterozoic boundary. Soc. Econ. Geol. Rev. 15, 5–47 (2008).

    Google Scholar 

  25. 25.

    Klein, C. & Beukes, N. J. Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the early Proterozoic Transvaal Supergroup, South Africa. Econ. Geol. 84, 1733–1774 (1989).

    Article  Google Scholar 

  26. 26.

    Meyers, S. R. Seeing red in cyclic stratigraphy: spectral noise estimation for astrochronology. Paleoceanography 27, 1–12 (2012).

    Google Scholar 

  27. 27.

    Hilgen, F. J. et al. Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy. Geol. Soc. Lond. Spec. Publ. 404, 157–197 (2015).

    Article  Google Scholar 

  28. 28.

    Laskar, J., Fienga, A., Gastineau, M. & Manche, H. La2010: a new orbital solution for the long term motion of the Earth. Astron. Astrophys. 532, A89 (2011).

    Article  Google Scholar 

  29. 29.

    Pälike, H., Laskar, J. & Shackleton, N. J. Geologic constraints on the chaotic diffusion of the solar system. Geology 32, 929–932 (2004).

    Article  Google Scholar 

  30. 30.

    Laskar, J. The chaotic motion of the solar system: a numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990).

    Article  Google Scholar 

  31. 31.

    Ma, C., Meyers, S. R. & Sageman, B. B. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence. Nature 542, 468–470 (2017).

    Article  Google Scholar 

  32. 32.

    Parnell, A. C., Haslett, J., Allen, J. R. M., Buck, C. E. & Huntley, B. A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quat. Sci. Rev. 27, 1872–1885 (2008).

    Article  Google Scholar 

  33. 33.

    Olsen, P. E. & Kent, D. V. Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic time-scale and the long-term behaviour of the planets. Philos. Trans. R. Soc. A 357, 1761–1786 (1999).

    Article  Google Scholar 

  34. 34.

    Fang, Q. et al. Geologic evidence for chaotic behavior of the planets and its constraints on the third-order eustatic sequences at the end of the Late Paleozoic Ice Age. Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 848–859 (2015).

    Article  Google Scholar 

  35. 35.

    Ripepe, M. & Fischer, A. G. Stratigraphic rhythms synthesized from orbital variations. Kansas Geol. Surv. Bull. 233, 335–344 (1991).

    Google Scholar 

  36. 36.

    Cheney, E. S. Sequence stratigraphy and plate tectonic significance of the Transvaal succession of southern Africa and its equivalent in Western Australia. Precambrian Res. 79, 3–24 (1996).

    Article  Google Scholar 

  37. 37.

    Ewers, W. E. & Morris, R. Studies of the Dales Gorge Member of the Brockman Iron Formation, Western Australia. Econ. Geol. 76, 1929–1953 (1981).

    Article  Google Scholar 

  38. 38.

    Pickard, A. L., Barley, M. E. & Krapež, B. Deep-marine depositional setting of banded iron formation: sedimentological evidence from interbedded clastic sedimentary rocks in the early Palaeoproterozoic Dales Gorge Member of Western Australia. Sediment. Geol. 170, 37–92 (2004).

    Article  Google Scholar 

  39. 39.

    Cowan, D. & Cooper, G. Wavelet analysis of detailed drillhole magnetic susceptibility data, Brockman Iron Formation, Hamersley Basin, Western Australia. Explor. Geophys. 34, 63–68 (2003).

    Article  Google Scholar 

  40. 40.

    Kutzbach, J. E., Xiaodong, L., Zhengyu, L. & Guangshan, C. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years. Clim. Dyn. 30, 567–579 (2008).

    Article  Google Scholar 

  41. 41.

    Kutzbach, J. E. Idealized Pangean climates: sensitivity to orbital change. Geol. Soc. Am. Spec. Pap. 228, 41–55 (1994).

    Google Scholar 

  42. 42.

    Reinhardt, L. & Ricken, W. The stratigraphic and geochemical record of Playa Cycles: monitoring a Pangaean monsoon-like system (Triassic, Middle Keuper, S. Germany). Palaeogeogr. Palaeoclimatol. Palaeoecol. 161, 205–227 (2000).

    Article  Google Scholar 

  43. 43.

    Zhang, S. et al. Orbital forcing of climate 1.4 billion years ago. Proc. Natl Acad. Sci. USA 112, 1406–1413 (2015).

    Google Scholar 

  44. 44.

    Meyers, S. R. & Malinverno, A. Proterozoic Milankovitch cycles and the history of the solar system. Proc. Natl Acad. Sci. USA 115, 6363–6368 (2018).

    Article  Google Scholar 

  45. 45.

    Li, W., Beard, B. L. & Johnson, C. M. Biologically recycled continental iron is a major component in banded iron formations. Proc. Natl Acad. Sci. USA 112, 8193–8198 (2015).

    Article  Google Scholar 

  46. 46.

    Thomson, D. J. Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055–1096 (1982).

    Article  Google Scholar 

  47. 47.

    Meyers, S. R. Astrochron: an R package for astrochronology (2014); cran.rproject.org/web/packages/astrochron/index.html

  48. 48.

    Meyers, S. R., Sageman, B. B. & Hinnov, L. A. Integrated quantitative stratigraphy of the Cenomanian–Turonian Bridge Creek Limestone Member using evolutive harmonic analysis and stratigraphic modelling. J. Sediment. Res. 71, 628–644 (2001).

    Article  Google Scholar 

  49. 49.

    Söderlund, U. & Johansson, L. A simple way to extract baddeleyite (ZrO2). Geochem. Geophys. Geosyst. 3, 1–7 (2002).

    Article  Google Scholar 

  50. 50.

    Mattinson, J. M. Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66 (2005).

    Article  Google Scholar 

  51. 51.

    Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).

    Article  Google Scholar 

  52. 52.

    McLean, N. M., Condon, D. J., Schoene, B. & Bowring, S. A. Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochim. Cosmochim. Acta 164, 481–501 (2015).

    Article  Google Scholar 

  53. 53.

    Krogh, T. E. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 37, 485–494 (1973).

    Article  Google Scholar 

  54. 54.

    Hiess, J., Condon, D. J., McLean, N. & Noble, S. R. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610–1614 (2012).

    Article  Google Scholar 

  55. 55.

    McLean, N. M., Bowring, J. F. & Bowring, S. A. An algorithm for U–Pb isotope dilution data reduction and uncertainty propagation. Geochem. Geophys. Geosyst. 12, Q0AA18 (2011).

    Article  Google Scholar 

  56. 56.

    Oonk P. B. H. Fraction-Specific Geochemistry across the Asbestos Hills BIF of the Transvaal Supergroup, South Africa: Implications for the Origin of BIF and the History of Atmospheric Oxygen. PhD thesis, Rhodes University 1–209 (2016).

Download references

Acknowledgements

We thank C. Albutt and Murphy for providing us with access to sections Woodstock and Daniëlskuil; S. Hilgen for help with the logging; H. Tsikos for arranging access to drill core Gasesa-1; N. Beukes for help with organizing the drilling and lutite sampling of drill core UUBH-1, which was drilled by OB Mining & Drilling Pty Ltd; and S. Meyers for advice on the spectral analysis. This study was supported by the Dutch National Science Foundation (grant NWO ALWOP.192), the Swiss National Science Foundation (grant 200021_169086) and the Dr. Schurmannfonds (grant 126-2017).

Author information

Affiliations

Authors

Contributions

All authors contributed to developing the ideas presented. F.J.H. conceived the project. F.J.H., M.L.L., J.H.F.L.D. and U.S. collected the field data. F.J.H. and M.L.L. did the cyclostratigraphic analyses and interpretation. J.H.F.L.D. carried out U–Pb dating work. M.L.L. wrote the article, with U–Pb contributions from J.H.F.L.D. and help from F.J.H., P.R.D.M. and U.S.

Corresponding author

Correspondence to Margriet L. Lantink.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Figures and Tables

Supplementary Data

Supplementary Data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lantink, M.L., Davies, J.H.F.L., Mason, P.R.D. et al. Climate control on banded iron formations linked to orbital eccentricity. Nat. Geosci. 12, 369–374 (2019). https://doi.org/10.1038/s41561-019-0332-8

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing