Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ubiquitous lower-mantle anisotropy beneath subduction zones

Abstract

Seismic anisotropy provides key information to map the trajectories of mantle flow and understand the evolution of our planet. While the presence of anisotropy in the uppermost mantle is well established, the existence and nature of anisotropy in the transition zone and uppermost lower mantle are still debated. Here we use three-dimensional global seismic tomography images based on a large dataset that is sensitive to this region to show the ubiquitous presence of anisotropy in the lower mantle beneath subduction zones. Whereas above the 660 km seismic discontinuity slabs are associated with fast SV anomalies up to about 3%, in the lower mantle fast SH anomalies of about 2% persist near slabs down to about 1,000–1,200 km. These observations are consistent with 3D numerical models of deformation from subducting slabs and the associated lattice-preferred orientation of bridgmanite produced in the dislocation creep regime in areas subjected to high stresses. This study provides evidence that dislocation creep may be active in the Earth’s lower mantle, providing new constraints on the debated nature of deformation in this key, but inaccessible, component of the deep Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of 1D averages of radial anisotropy beneath various subduction zones.
Fig. 2: Cross-sections of perturbations in Voigt average and anisotropic structure.
Fig. 3: K-means clustering analysis of the radially anisotropic structure in SGLOBE-rani.
Fig. 4: Cross-sections of perturbations in anisotropic structure and corresponding geodynamic models.

Similar content being viewed by others

Code availability

The large scale subduction models were built using the code I3MG, which is not freely available and was kindly provided by T. Gerya.

The mantle fabric calculations used a modified version of the code D-REX available at http://www.ipgp.fr/~kaminski/web_doudoud/DRex.tar.gz.

Data availability

The data that support the findings of this study are available from the corresponding author on request. The tomography model SGLOBE-rani used in this study is available in the IRIS Data Services Products (http://ds.iris.edu/ds/products/emc-earthmodels/).

References

  1. Spakman, W., van der Lee, S. & van der Hilst, R. D. Travel-time tomography of the European-Mediterranean mantle down to 1400 km. Phys. Earth Planet. Inter. 79, 3–74 (1993).

    Article  Google Scholar 

  2. Van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  Google Scholar 

  3. Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. 118, 5920–5938 (2013).

    Article  Google Scholar 

  4. French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    Article  Google Scholar 

  5. Ballmer, M. D., Schmerr, N. C., Nakagawa, T. & Ritsema, J. Compositional mantle layering revealed by slab stagnation at ~1,000 km depth. Sci. Adv 1, e1500815 (2015).

    Article  Google Scholar 

  6. King, S. D., Frost, D. J. & Rubie, D. C. Why cold slabs stagnate in the transition zone. Geology 43, 231–234 (2015).

    Article  Google Scholar 

  7. Rudolph, M. L., Lekic, V. & Lithgow-Bertelloni, C. Viscosity jump in earth’s mid-mantle. Science 350, 1349 (2015).

    Article  Google Scholar 

  8. Marquardt, H. & Miyagi, L. Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nat. Geosci. 8, 311–314 (2015).

    Article  Google Scholar 

  9. Miyagi, L. & Wenk, H.-R. Texture development and slip systems in bridgmanite and bridgmanite + ferropericlase aggregates. Phys. Chem. Miner. 43, 597–613 (2016).

    Article  Google Scholar 

  10. Tsujino, N., Yamazaki, D., Seto, Y., Higo, Y. & Takahashi, E. Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite. Nature 539, 81–84 (2016).

    Article  Google Scholar 

  11. Yamazaki, D. & Karato, S.-I. Fabric development in (Mg, Fe)O during large strain, shear deformation: Implications for seismic anisotropy in Earth’s lower mantle. Phys. Earth Planet. Inter. 131, 251–267 (2002).

    Article  Google Scholar 

  12. Lay, T., Williams, Q., Garnero, E. J., Kellogg, L. & Wysession, M. E. in The Core-Mantle Boundary Region (eds Gurnis, M. et al.) Vol. 28 299–318 (American Geophysical Union, Washington DC,1998).

  13. Beghein, C. & Trampert, J. Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle. Earth Planet. Sci. Lett. 217, 151–162 (2003).

    Article  Google Scholar 

  14. Panning, M. & Romanowicz, B. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys. J. Int. 167, 361–379 (2006).

    Article  Google Scholar 

  15. Panning, M., Lekic, V. & Romanowicz, B. Importance of crustal corrections in the development of a new global model of radial anisotropy. J. Geophys. Res. 115, B12325 (2010).

    Article  Google Scholar 

  16. Chang, S.-J., Ferreira, A. M. G., Ritsema, J., van Heijst, H. J. & Woodhouse, J. H. Global radially anisotropic mantle structure from multiple datasets: a review, current challenges, and outlook. Tectonophysics 617, 1–19 (2014).

    Article  Google Scholar 

  17. Karato, S.-I., Zhang, S. & Wenk, H.-R. Superplasticity in earth’s lower mantle: evidence from seismic anisotropy and rock physics. Science 270, 458–461 (1995).

    Article  Google Scholar 

  18. Boioli, F. et al. Pure climb creep mechanism drives flow in Earth’s lower mantle. Sci. Adv. 3, e160195 (2017).

    Article  Google Scholar 

  19. Wookey, J. & Kendall, J.-M. Evidence of midmantle anisotropy from shear wave splitting and the influence of shear-coupled P wave. J. Geophys. Res. 109, B07309 (2004).

    Article  Google Scholar 

  20. Walpole, J., Wookey, J., Kendall, J.-M. & Masters, T. G. Seismic anisotropy and mantle flow below subducting slabs. Earth Planet. Sci. Lett. 465, 155–167 (2017).

    Article  Google Scholar 

  21. Nowacki, A., Kendall, J. M., Wookey, J. & Pemberton, A. Mid-mantle anisotropy in subduction zones and deep water transport. Geochem. Geophys. Geosys. 16, 764–784 (2015).

    Article  Google Scholar 

  22. Montagner, J.-P. Can seismology tell us anything about convection in the mantle? Rev. Geophys. 32, 115–137 (1994).

    Article  Google Scholar 

  23. Chang, S.-J., Ferreira, A. M. G. & Faccenda, M. Upper- and mid-mantle interaction between the samoan plume and the Tonga-Kermadec slabs. Nat. Commun. 7, 10799 (2016).

    Article  Google Scholar 

  24. Marone, F. & Romanowicz, B. Non-linear crustal corrections in high-resolution waveform seismic tomography. Geophys. J. Int. 170, 460–467 (2007).

    Article  Google Scholar 

  25. Bozdag, E. & Trampert, J. On crustal corrections in surface wave tomography. Geophys. J. Int. 172, 1076–1088 (2007).

    Google Scholar 

  26. Ferreira, A. M. G., Woodhouse, J. H., Visser, K. & Trampert, J. On the robustness of global radially anisotropic surface wave tomography. J. Geophys. Res. 115, B04313 (2010).

    Article  Google Scholar 

  27. Chang, S.-J. & Ferreira, A. M. G. Improving global radial anisotropy tomography: the importance of simultaneously inverting for crustal and mantle structure. Bull. Seismol. Soc. Am. 107, 624–638 (2017).

    Article  Google Scholar 

  28. Chang, S.-J., Ferreira, A. M. G., Ritsema, J., van Heijst, H. J. & Woodhouse, J. H. Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. J. Geophys. Res. 120, 4278–4300 (2015).

    Article  Google Scholar 

  29. Kustowski, B., Ekström, G. & Dziewonski, A. M. Anisotropic shear-wave velocity structure of the earth’s mantle: a global model. J. Geophys. Res. 113, B06306 (2008).

    Article  Google Scholar 

  30. Moulik, P. & Ekström, G. An anisotropic shear velocity model of the earth’s mantle using normal modes, body waves, surface waves and long-period waveforms. J. Geophys. Res. 199, 1713–1738 (2014).

    Google Scholar 

  31. Auer, L., Boschi, L., Becker, T. W., Nissen-Meyer, T. & Giardini, D. Savani: a variable resolution whole-mantle model of anisotropic shear velocity variations based on multiple data sets. J. Geophys. Res. 119, 3006–3034 (2014).

    Article  Google Scholar 

  32. MacQueen, J. In Proc. Fifth Berkeley Symp. Math. Stat. Prob. 281–297 (University of California Press, 1967); https://projecteuclid.org/euclid.bsmsp/1200512992

  33. Houser, C., Masters, G., Shearer, P. & Laske, G. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int. 174, 195–212 (2008).

    Article  Google Scholar 

  34. Lekic, V. & Romanowicz, B. Tectonic regionalization without a priori information: a cluster analysis of upper mantle tomography. Earth Planet. Sci. Lett. 308, 151–160 (2011).

    Article  Google Scholar 

  35. Faccenda, M. Mid mantle seismic anisotropy around subduction zones. Phys. Earth Planet. Inter. 227, 1–19 (2014).

    Article  Google Scholar 

  36. Christensen, U. R. The influence of trench migration on slab penetration into the lower mantle. Earth Planet. Sci. Lett. 140, 27–39 (1996).

    Article  Google Scholar 

  37. Faccenda, M. & Dal Zilio, L. The role of solid-solid phase transitions in mantle convection. Lithos 268–271, 198–224 (2017).

    Article  Google Scholar 

  38. Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovich, R. & Hirose, K. Persistence of strong silica-enriched domains in the Earth’s Lower mantle. Nat. Geosci. 10, 236–240 (2017).

    Article  Google Scholar 

  39. McNamara, A. K., van Keken, P. E. & Karato, S.-I. Development of anisotropic structure in the earth’s lower mantle by solid-state convection. Nature 416, 310–314 (2002).

    Article  Google Scholar 

  40. Wenk, H. R., Speziale, S., McNamara, A. K. & Garnero, E. J. Modeling lower mantle anisotropy development in a subducting slab. Earth Planet. Sci. Lett. 245, 302–314 (2006).

    Article  Google Scholar 

  41. Mainprice, D. in Treatise on Geophysics Vol. 2 (ed. Schubert, G.) 437–492 (Elsevier, 2007).

  42. Girard, J., Amulele, G., Farla, R., Mohiuddin, A. & Karato, S.-I. Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science 351, 144–147 (2016).

    Article  Google Scholar 

  43. Faccenda, M. et al. Extrinsic elastic anisotropy in a compositionally heterogeneous Earth’s mantle. J. Geophys. Res. https://doi.org/10.1029/2018JB016482 (2019).

  44. Dziewoński, A. M. & Anderson, D. L. Preliminary reference earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  Google Scholar 

  45. Engdahl, E. R., Van der Hilst, R. D. & Buland, R. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am. 88, 722–743 (1998).

    Google Scholar 

  46. Takeuchi, H. & Saito, M. in Methods of Computational Physics Vol. 11 (ed. Bolt, B. A.) 217–295 (Academic Press, New York, 1972).

  47. Backus, G. E. & Gilbert, J. F. The resolving power of gross earth data. Geophys. J. R. Astron. Soc. 16, 169–205 (1968).

    Article  Google Scholar 

  48. Bevington, P. R. & Robinson, D. K. Data Reduction and Error Analysis for the Physical Sciences 3rd edn (McGraw-Hill, 2002).

  49. Forsyth, D. The early structural evolution and anisotropy of the oceanic upper mantle. Geophys. J. R. Astron. Soc. 43, 103–162 (1975).

    Article  Google Scholar 

  50. Gerya, T. V. Introduction to Numerical Geodynamic Modelling (Cambridge Univ. Press, 2009).

  51. Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modelling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    Article  Google Scholar 

  52. McNamara, A. K., Karato, S.-H. & van Keken, P. Localization of dislocation creep in the lower mantle: implications for the origin of seismic anisotropy. Earth Planet. Sci. Lett. 191, 85–99 (2001).

    Article  Google Scholar 

  53. Nakagawa, T., Tackley, P. J., Deschamps, F. & Connolly, J. A. D. Incorporating self-consistently calculated mineral physics into thermochemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in earth’s mantle. Geochem. Geophys. Geosys. 10, Q03004 (2009).

    Article  Google Scholar 

  54. Faccenda, M. & Capitanio, F. A. Seismic anisotropy around subduction zones: Insights from three-dimensional modelling of upper mantle deformation and sks splitting calculations. Geochem. Geophys. Geosyst. 14, 243–262 (2013).

    Article  Google Scholar 

  55. Faccenda, M. & Capitanio, F. A. Development of mantle seismic anisotropy during subduction-induced 3-D flow. Geophys. Res. Lett. 39, L11305 (2012).

    Article  Google Scholar 

  56. Tommasi, A., Mainprice, D., Cordier, P., Thoroval, C. & Couvy, H. Strain-induced seismic anisotropy of wadsleyite polycrystals and flow patterns in the mantle transition zone. J. Geophys. Res. 109, B12405 (2004).

  57. Wentzcovitch, R. M., Karki, B. B., Cococcioni, M. & de Gironcoli, S. Thermoelastic Properties of MgSiO3-perovskite: insights on the nature of the earth’s lower mantle. Phys. Rev. Lett. 92, 018501 (2004).

    Article  Google Scholar 

  58. Zhang, Z., Stixrude, L. & Brodholt, J. Elastic properties of MgSiO3-perovskite under lower mantle conditions and the composition of the deep earth. Earth Planet. Sci. Lett. 379, 1–12 (2013).

    Article  Google Scholar 

  59. Backus, G. E. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res. 67, 4427–4440 (1962).

    Article  Google Scholar 

  60. Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals II. phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This research was initially supported by the Leverhulme Trust (project no. F/00 204/AS), followed by support from NERC project NE/K005669/1 and the Korea Meteorological Administration Research and Development Program under grant no. KMI2018-09312. A.M.G.F. also acknowledges discussions supported by COST Action ES1401-TIDES. M.F. was supported by the Progetto di Ateneo FACCPTRAT12 granted by the Università di Padova and by the ERC StG #758199 NEWTON. We acknowledge the availability of global seismograms from the IRIS Data Services and the II, IU, GEOSCOPE and GEOFON networks. The inversions were carried out initially on the High Performance Computing Cluster supported by the Research and Specialist Computing Support services at the University of East Anglia followed by the national UK supercomputing facilities HECToR and Archer. Geodynamic simulations were performed on the Galileo Computing Cluster, CINECA, Italy, thanks to the computational time assigned to M.F. under the NUMACOP and NUMACOP2 projects. We thank J. Brodholt for fruitful discussions and for his valuable suggestions. We also thank our colleagues D. Dobson and A. Song for fruitful discussions, and we are grateful to C. Lithgow-Bertelloni and L. Stixrude for providing HeFESTo’s results. We are grateful to Z. Zhang for providing bridgmanite’s full elastic constants from ab-initio calculations.

Author information

Authors and Affiliations

Authors

Contributions

A.M.G.F. designed the study, performed analyses of the tomography images, interpreted the results and wrote the first draft of the manuscript. M.F. contributed to the design of the study, performed and analysed geodynamic models, mantle fabric and SPO calculations, and wrote the text on the geodynamics part of the study. W.S. performed geodynamic models and mantle fabric calculations and prepared some of the tomography and geodynamics figures. S.-J.C. performed analyses of the tomography images and statistical tests of the seismic images. L.S. assisted the analyses of the tomography images and composing the figures.

Corresponding author

Correspondence to Ana M. G. Ferreira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Tables

Supplementary Video 1

Simulation of slab stagnation at the 660-km discontinuity.

Supplementary Video 2

Simulation of slab penetration to the lower mantle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, A.M.G., Faccenda, M., Sturgeon, W. et al. Ubiquitous lower-mantle anisotropy beneath subduction zones. Nat. Geosci. 12, 301–306 (2019). https://doi.org/10.1038/s41561-019-0325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0325-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing