Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct air–water gas exchange regimes in low- and high-energy streams

Abstract

Gas exchange across the air–water interface drives the flux of climate-relevant gases and is critical for biogeochemical processes in aquatic ecosystems. Despite the presence of mountain streams worldwide, we lack basic understanding of gas exchange through their turbulent surfaces, making global estimates of outgassing from streams and rivers difficult to constrain. Here we combine new estimates of gas transfer velocities from tracer gas additions in mountain streams with published data to cover streams differing in geomorphology and hydraulics. We find two different scaling relationships between the turbulence-induced energy dissipation rate and gas transfer velocity for low- and high-channel slope streams, indicating that gas exchange in streams exists in two states. We suggest that turbulent diffusion drives gas transfer velocity in low-energy streams; whereas turbulence entrains air bubbles in high-energy streams, and the resulting bubble-mediated gas exchange accelerates with energy dissipation rate. Gas transfer velocities in the high-energy streams are among the highest reported. Our findings offer a framework to include mountain streams in future estimates of gas fluxes from streams and rivers at the global scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Data range of common gas exchange predictors and model fit based on low-sloped streams.
Fig. 2: k600 scaled against eD.
Fig. 3: Density distributions of stream characteristics for low- versus high-energy streams.
Fig. 4: Gas exchange increased with streambed roughness.

Similar content being viewed by others

Data availability

The compiled data on k600, channel slope, velocity, depth, width and stream discharge, along with additional data and information on hydraulic scaling, a summary of data and statistics, and the code used to generate the results and figures presented here, can be found in the Supplementary Information.

References

  1. Zappa, C. J. et al. Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophys. Res. Lett. 34, L10601 (2007).

  2. Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeny, C. & McGillis, W. R. Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci. 1, 213–244 (2009).

    Article  Google Scholar 

  3. Jähne, B. & Haußecker, H. Air-water gas exchange. Annu. Rev. Fluid Mech. 30, 443–468 (1998).

    Article  Google Scholar 

  4. Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185 (2007).

    Article  Google Scholar 

  5. Battin, T. J. et al. The boundless carbon cycle. Nat. Geosci. 2, 598–600 (2009).

    Article  Google Scholar 

  6. Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article  Google Scholar 

  7. Raymond, P. A. et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr. Fluid. Environ. 2, 41–53 (2012).

    Article  Google Scholar 

  8. Hall, R. O. & Madinger, H. L. Use of argon to measure gas exchange in turbulent mountain streams. Biogeosciences 15, 3085–3092 (2018).

    Article  Google Scholar 

  9. Liss, P. S. Processes of gas exchange across an air-water interface. Deep Sea Res. 20, 221–238 (1973).

    Google Scholar 

  10. Pereira, R., Ashton, I., Sabbaghzadeh, B., Shutler, J. D. & Upstill-Goddard, R. C. Reduced air–sea CO2 exchange in the Atlantic Ocean due to biological surfactants. Nat. Geosci. 11, 492–496 (2018).

    Article  Google Scholar 

  11. Wanninkhof, R., Mulholland, P. J. & Elwood, J. W. Gas exchange rates for a first-order stream determined with deliberate and natural tracers. Water Resour. Res. 26, 1621–1630 (1990).

    Google Scholar 

  12. McNeil, C. & D’Asaro, E. Parameterization of air–sea gas fluxes at extreme wind speeds. J. Mar. Syst. 66, 110–121 (2007).

    Article  Google Scholar 

  13. Vachon, D., Prairie, Y. T. & Cole, J. J. The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnol. Oceanogr. 55, 1723–1732 (2010).

    Article  Google Scholar 

  14. Chanson, H., Toombes, L., Moog, D. B. & Jirka, G. H. Discussion of stream reaeration in nonuniform flow: macroroughness enhancement. J. Hydraul. Eng. 126, 222–224 (2000).

    Article  Google Scholar 

  15. Chanson, H. & Toombes, L. Strong interactions between free-surface aeration and turbulence in an open channel flow. Exp. Therm. Fluid Sci. 27, 525–535 (2003).

    Article  Google Scholar 

  16. Hall, R. O., Kennedy, T. A. & Rosi-Marshall, E. J. Air–water oxygen exchange in a large whitewater river. Limnol. Oceanogr. Fluid. Environ. https://doi.org/10.1215/21573689-1572535 (2012).

  17. Marzolf, E. R., Mulholland, P. J. & Steinman, A. D. Improvements to the diurnal upstream-downstream dissolved-oxygen change technique for determining whole-stream metabolism in small streams. Can. J. Fish. Aquat. Sci. 51, 1591–1599 (1994).

    Article  Google Scholar 

  18. Cole, J. J. & Caraco, N. F. Atmospheric exchange of carbon dioxide in a low wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr. 43, 647–656 (2008).

    Article  Google Scholar 

  19. O'Connor, D. J. & Dobbins, W. E. Mechanism of reaeration in natural streams.Trans. Am. Soc. Civ. Eng. 123, 641–666 (1956).

    Google Scholar 

  20. Holtgrieve, G. W., Schindler, D. E., Branch, T. A. & A’mar, Z. T. Simultaneous quantification of aquatic ecosystem metabolism and reaeration using a Bayesian statistical model of oxygen dynamics. Limnol. Oceanogr. 55, 1047–1062 (2010).

    Article  Google Scholar 

  21. Appling, A. P., Hall, R. O., Yackulic, C. B. & Arroita, M. Overcoming equifinality: leveraging long time series for stream metabolism estimation. J. Geophys. Res. Biogeosci. 123, 624–645 (2018).

    Article  Google Scholar 

  22. Butman, D. & Raymond, P. A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nat. Geosci. 4, 839–842 (2011).

    Article  Google Scholar 

  23. Larsen, I. J., Montgomery, D. R. & Greenberg, H. M. The contribution of mountains to global denudation. Geology 42, 527–530 (2014).

    Article  Google Scholar 

  24. Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M. & Weingartner, R. Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour. Res. 43, W07447 (2007).

    Article  Google Scholar 

  25. Qu, B. et al. Greenhouse gases emissions in rivers of the Tibetan Plateau. Sci. Rep. 7, 16573 (2017).

    Article  Google Scholar 

  26. Kuhn, C. et al. Patterns in stream greenhouse gas dynamics from mountains to plains in northcentral Wyoming. J. Geophys. Res. Biogeosci. 122, 2173–2190 (2017).

    Article  Google Scholar 

  27. Peter, H. et al. Scales and drivers of temporal pCO2 dynamics in an Alpine stream. J. Geophys. Res. Biogeosci. 119, 1078–1091 (2014).

    Article  Google Scholar 

  28. Schelker, J., Singer, G. A., Ulseth, A. J., Hengsberger, S. & Battin, T. J. CO2 evasion from a steep, high gradient stream network: importance of seasonal and diurnal variation in aquatic pCO2 and gas transfer. Limnol. Oceanogr. 61, 1826–1838 (2016).

    Article  Google Scholar 

  29. Maurice, L., Rawlins, B. G., Farr, G., Bell, R. & Gooddy, D. C. The influence of flow and bed slope on gas transfer in steep streams and their implications for evasion of CO2. J. Geophys. Res. Biogeosci. 122, 2862–2875 (2017).

    Article  Google Scholar 

  30. McDowell, M. J. & Johnson, M. S. Gas transfer velocities evaluated using carbon dioxide as a tracer show high streamflow to be a major driver of total CO2 evasion flux for a headwater stream. J. Geophys. Res. Biogeosci. 123, 2183–2197 (2018).

    Article  Google Scholar 

  31. Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).

    Article  Google Scholar 

  32. Melching, C. S. & Flores, H. E. Reaeration equations derived from US Geological Survey database. J. Environ. Eng. 125, 407–414 (1999).

    Article  Google Scholar 

  33. Tsivoglou, E. C. & Neal, L. A. Tracer measurement of reaeration: III. Predicting the reaeration capacity of inland streams. J. Water Pollut. Control Fed. 48, 2669–2689 (1976).

    Google Scholar 

  34. Muggeo, V. M. Estimating regression models with unknown break-points. Stat. Med. 22, 3055–3071 (2003).

    Article  Google Scholar 

  35. Muggeo, V. segmented: an R package to fit regression models with broken-line relationships. R News 8, 20–25 (2008).

    Google Scholar 

  36. Montgomery, D. R. & Buffington, J. M. Channel-reach morphology in mountain drainage basins. Geol. Soc. Am. Bull. 109, 596–611 (1997).

    Article  Google Scholar 

  37. Schneider, J. M., Rickenmann, D., Turowski, J. M. & Kirchner, J. W. Self-adjustment of stream bed roughness and flow velocity in a steep mountain channel. Water Resour. Res. 51, 7838–7859 (2015).

    Article  Google Scholar 

  38. Knighton, D. Fluvial Forms and Processes: A New Perspective (Hodder Education, London, 1998).

    Google Scholar 

  39. Moog, D. B. & Jirka, G. H. Stream reaeration in nonuniform flow: macroroughness enhancement. J. Hydraul. Eng. 125, 11–16 (1999).

    Article  Google Scholar 

  40. Wüest, A., Brooks, N. H. & Imboden, D. M. Bubble plume modeling for lake restoration. Water Resour. Res. 28, 3235–3250 (1992).

    Article  Google Scholar 

  41. D’Asaro, E. & McNeil, C. Air–sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats. J. Mar. Syst. 66, 92–109 (2007).

    Article  Google Scholar 

  42. Asher, W. & Wanninkhof, R. Transient tracers and air-sea gas transfer. J. Geophys. Res. Oceans 103, 15939–15958 (1998).

    Article  Google Scholar 

  43. Asher, W. E. & Wanninkhof, R. The effect of bubble-mediated gas transfer on purposeful dual-gaseous tracer experiments. J. Geophys. Res. Oceans 103, 10555–10560 (1998).

    Article  Google Scholar 

  44. Woolf, D. K. et al. Modelling of bubble-mediated gas transfer: fundamental principles and a laboratory test. J. Mar. Syst. 66, 71–91 (2007).

    Article  Google Scholar 

  45. Woolf, D. K. Bubbles and the air-sea transfer velocity of gases. Atmos. Ocean 31, 517–540 (1993).

    Article  Google Scholar 

  46. Stream Solute Workshop. Concepts and methods for assessing solute dynamics in stream ecosystems. J. N. Am. Benthol. Soc. 9, 95–119 (1990).

    Article  Google Scholar 

  47. Kana, T. M., Darkangelo, C., Hunt, M. D. & Oldham, J. B. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal. Chem. 66, 4166–4170 (1994).

    Article  Google Scholar 

  48. Stan Development Team. Stan Modeling Language: User’s Guide and Reference Manual Version 2.17 (Stan, 2017).

  49. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  50. Wanninkhof, R. Relationship between wind-speed and gas-exchange over the ocean. J. Geophys. Res. 97, 7373–7382 (1992).

    Article  Google Scholar 

  51. Jähne, B., Heinz, G. & Dietrich, W. Measurement of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res. Oceans 92, 10767–10776 (1987).

    Article  Google Scholar 

  52. Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L. & Carbonneau, P. E. Topographic structure from motion: a new development in photogrammetric measurement. Earth Surf. Process. Landf. 38, 421–430 (2013).

    Article  Google Scholar 

  53. Dietrich, J. T. Bathymetric structure-from-motion: extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surf. Process. Landf. 42, 355–364 (2016).

    Article  Google Scholar 

  54. Moog, D. B. & Jirka, G. H. Air-water gas transfer in uniform channel flow. J. Hydraul. Eng. 125, 3–10 (1999).

    Article  Google Scholar 

  55. Xiao, X., White, E. P., Hooten, M. B. & Durham, S. L. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology 92, 1887–1894 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. Hammer, R. Romanens, L. Freund, F. Cuttat and V. Sahli for fieldwork conducting the argon gas tracer releases as well as measuring channel slopes for the Swiss study streams; S. Lane for helping with photogrammetry and the semivariance analysis; P. Raymond and co-authors for providing data from ref. 7; and D. McGinnis for discussions on bubble-mediated gas exchange. Financial support came from the Swiss Science Foundation (200021-163015) to T.J.B.

Author information

Authors and Affiliations

Authors

Contributions

A.J.U., R.O.H. Jr and T.J.B. conceived the idea of scaling. M.B.C. calculated streambed roughness. H.L.M. produced code to analyse Ar data. A.J.U. analysed the results. A.J.U., R.O.H., T.J.B. and A.N. wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Amber J. Ulseth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulseth, A.J., Hall, R.O., Boix Canadell, M. et al. Distinct air–water gas exchange regimes in low- and high-energy streams. Nat. Geosci. 12, 259–263 (2019). https://doi.org/10.1038/s41561-019-0324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0324-8

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology