Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Surface refreshing of Martian moon Phobos by orbital eccentricity-driven grain motion

Abstract

The surface of the Martian moon Phobos exhibits two distinct geologic units, red and blue, characterized by their spectral slopes. The provenance of these units is uncertain yet crucial to understanding the origin of the Martian moon and its interaction with the space environment. Here we present a combination of dynamical analyses and numerical simulations of particle dynamics to show that periodic variations in dynamic slopes, driven by orbital eccentricity, can cause surface grain motion. For regions with steep slopes that vary substantially over one Phobos orbit, the surface is excavated at a faster rate than the space weathering timescale. Our model predicts that this new mechanism is most effective in regions that coincide with blue units. Therefore, space weathering is the likely driver of the dichotomy on the moon’s surface, reddening blue units that represent pristine endogenic material.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Changes in the local surface slopes over one Phobos orbit.
Fig. 2: Local simulations of grain motion on the surface.
Fig. 3: High-slope regions around Stickney crater that undergo large variations coincide with blue surface units.
Fig. 4: The blue regions across Phobos undergo eccentricity-driven regolith motion.
Fig. 5: Required volume fluxes necessary to uncover subsurface material before a certain weathering timescale.

Code availability

The code used to generate the datasets is available from the corresponding author on reasonable request.

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. 1.

    Shi, X., Oberst, J. & Wilner, K. Mass wasting on Phobos triggered by an evolving tidal environment. Geophys. Res. Lett. 43, 12371–12379 (2016).

    Article  Google Scholar 

  2. 2.

    Hurford, T. A. et al. Tidal disruption of Phobos as the cause of surface fractures. J. Geophys. Res. 121, 1054–1065 (2016).

    Article  Google Scholar 

  3. 3.

    Fraeman, A. A. et al. Spectral absorptions on Phobos and Deimos in the visible/near infrared wavelengths and their compositional constraints. Icarus 229, 196–205 (2014).

    Article  Google Scholar 

  4. 4.

    Basilevsky, A. T. et al. The surface geology and geomorphology of Phobos. Planet. Space Sci. 102, 95–118 (2014).

    Article  Google Scholar 

  5. 5.

    Pieters, C. M., Murchie, S., Thomas, N. & Britt, D. Composition of surface materials on the moons of Mars. Planet. Space Sci. 102, 144–151 (2014).

    Article  Google Scholar 

  6. 6.

    Murchie, S. L., Thomas, P. C., Rivkin, A. S. & Chabot, N. L. in Asteroids IV (eds Michel, P. et al.) 451–467(Univ. of Arizona Press, Tucson, 2015).

  7. 7.

    Hapke, B. Space weathering from Mercury to the asteroid belt. J. Geophys. Res. Planets 106, 10039–10073 (2001).

    Article  Google Scholar 

  8. 8.

    Vernazza, P., Binzel, R. P., Rossie, A., Fulchignoni, M. & Birlan, M. Solar wind as the origin of rapid weathering of asteroid surfaces. Nature 458, 993–995 (2009).

    Article  Google Scholar 

  9. 9.

    Kaluna, H. M., Masiero, J. R. & Meech, K. J. Space weathering trends among carbonaceous asteroids. Icarus 264, 62–71 (2016).

    Article  Google Scholar 

  10. 10.

    Binzel, R. P. et al. Earth encounters as the origin of fresh surfaces on near-Earth asteroids. Nature 463, 331–334 (2010).

    Article  Google Scholar 

  11. 11.

    Fraeman, A. A. et al. Analysis of disk-resolved OMEGA and CRISM spectral observations of Phobos and Deimos. J. Geophys. Res. 117, E00J15 (2012).

    Article  Google Scholar 

  12. 12.

    Thomas, N. et al. Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars Pathfinder results. Planet. Space Sci. 59, 1281–1292 (2011).

    Article  Google Scholar 

  13. 13.

    Kawakatsu, Y. et al. M. Mission concept of Martian Moons eXploration (MMX). In 68th International Astronautical Congress IAC-17-A3.3A.5 (2017).

  14. 14.

    Werner, R. A. & Scheeres, D. J. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 65, 313–344 (1996).

    Google Scholar 

  15. 15.

    Broucke, R. Stability of periodic orbits in the elliptic, restricted three-body problem. AIAA J. 7, 1003–1009 (1969).

    Article  Google Scholar 

  16. 16.

    Richardson, D. C., Walsh, K. J., Murdoch, N. & Michel, P. Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests. Icarus 212, 427–437 (2011).

    Article  Google Scholar 

  17. 17.

    Schwartz, S. R., Richardson, D. C. & Michel, P. An implementation of the soft-sphere discrete element method in a high-performance parallel gravity tree-code. Granul. Matter 14, 363–380 (2012).

    Article  Google Scholar 

  18. 18.

    Culling, E. H. Analytical theory of erosion. J. Geol. 68, 336–344 (1960).

    Article  Google Scholar 

  19. 19.

    Richardson, J. E. & Bowling, T. J. Investigating the combined effects of shape, density, and rotation on small body surface slopes and erosion rates. Icarus 234, 53–65 (2014).

    Article  Google Scholar 

  20. 20.

    Richardson, J. E., Melosh, H. J., Greenberg, R. J. & O’Brien, D. P. The global effects of impact-induced seismic activity on fractured asteroid surface morphology. Icarus 179, 325–349 (2005).

    Article  Google Scholar 

  21. 21.

    Roering, J. J., Kirchner, J. W. & Dietrich, W. E. Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resour. Res. 34, 853–870 (1999).

    Article  Google Scholar 

  22. 22.

    Shingareva, T. V. & Kuzmin, R. O. Mass-wasting processes on the surface of Phobos. Sol. Syst. Res. 35, 431–443 (2001).

    Article  Google Scholar 

  23. 23.

    Collins, G. S. & Melosh, H. J. Acoustic fluidization and the extraordinary mobility of sturzstroms. J. Geophys. Res. 108, 2473 (2003).

    Google Scholar 

  24. 24.

    Thomas, P. C. Ejecta emplacement on the Martian satellites. Icarus 131, 78–106 (1998).

    Article  Google Scholar 

  25. 25.

    Karachevtseva, I. P. et al. The Phobos information system. Planet. Space Sci. 102, 74–85 (2014).

    Article  Google Scholar 

  26. 26.

    Patsyn, V. et al. Spectrometric characteristics of the surface of Phobos from data obtained by HRSC on Mars Express. In European Planetary Science Congress, Madrid EPSC2012-197 (2012).

  27. 27.

    Johnson, T. V. & Fanale, F. P. Optical properties of carbonaceous chondrites and their relationship to asteroids. J. Geophys. Res. 78, 8507–8518 (1973).

    Article  Google Scholar 

  28. 28.

    Shepard, M. K. et al. Multi-wavelength observations of Asteroid 2100 Ra-Shalom. Icarus 193, 20–38 (2008).

    Article  Google Scholar 

  29. 29.

    Murchie, S. & Erard, S. The spectral properties and composition of Phobos from measurements by Phobos 2. Icarus 123, 63–86 (1996).

    Article  Google Scholar 

  30. 30.

    Iverson, R. M. The physics of debris flows. Rev. Geophys. 35, 3 (1997).

    Article  Google Scholar 

  31. 31.

    Pieters, C. M. & Noble, S. K. Space weathering on airless bodies. J. Geophys. Res. 121, 1865–1884 (2016).

    Article  Google Scholar 

  32. 32.

    Lucey, P. et al. in New Views of the Moon (eds Jolliff, B. L. et al.) 83–219 (Mineralogical Society of America, Washington DC, 2006).

  33. 33.

    Burns, J. A. The dynamical evolution and origin of the Martian moons. Vistas Astron. 22, 193–208 (1978).

    Article  Google Scholar 

  34. 34.

    Hansen, B. M. S. A dynamical context for the origin of Phobos and Deimos. Mon. Not. Roy. Astron. Soc. 475, 2452–2466 (2018).

    Article  Google Scholar 

  35. 35.

    Craddock, R. A. Are Phobos and Deimos the result of a giant impact? Icarus 211, 1150–1161 (2011).

    Article  Google Scholar 

  36. 36.

    Hyodo, R., Genda, H., Charnoz, S. & Rosenblatt, P. On the impact origin of Phobos and Deimos. I. thermodynamic and physical aspects. Astrophys. J. 845, 125–133 (2017).

    Article  Google Scholar 

  37. 37.

    Canup, R. & Salmon, J. Origin of Phobos and Deimos by the impact of a Vesta-to-Ceres sized body with Mars. Sci. Adv. 4, eaar6887 (2018).

    Article  Google Scholar 

  38. 38.

    Pignatale, F. C. et al. On the impact origin of Phobos and Deimos. III. Resulting composition from different impactors. Astrophys. J. 853, 12 (2018).

    Article  Google Scholar 

  39. 39.

    Glotch, T. D. et al. MGS-TES spectra suggest a basaltic component in the regolith of Phobos. J. Geophys. Res. 123, 2467–2484 (2018).

    Article  Google Scholar 

  40. 40.

    Gundlach, B. & Blum, J. A new method to determine the grain size of planetary regolith. Icarus 223, 479–492 (2013).

    Article  Google Scholar 

  41. 41.

    Scheeres, D. J. & Marzari, F. Spacecraft dynamics in the vicinity of a comet. J. Astronaut. Sci. 50, 35–52 (2002).

    Google Scholar 

  42. 42.

    Willner, K., Shi, X. & Oberst, J. Phobos’ shape and topography models. Planet. Space Sci. 102, 51–59 (2014).

    Article  Google Scholar 

  43. 43.

    Pätzold, M. et al. Phobos mass determination from the very close flyby of Mars Express in 2010. Icarus 229, 92–98 (2014).

    Article  Google Scholar 

  44. 44.

    Zhang, Y. et al. Creep stability of the proposed AIDA mission target 65803 Didymos: I. Discrete cohesionless granular physics model. Icarus 294, 98–123 (2017).

    Article  Google Scholar 

  45. 45.

    Busch, M. W. et al. Arecibo radar observations of Phobos and Deimos. Icarus 186, 581–584 (2007).

    Article  Google Scholar 

  46. 46.

    Jiang, M., Shen, Z. & Wang, J. A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances. Comput. Geotech. 65, 147–163 (2015).

    Article  Google Scholar 

  47. 47.

    Sasaki, S. Surface properties of Phobos/Deimos and formation of self-sustained Martian dust torus. Lunar Planet. Sci. Conf. 26, 1219–1220 (1995).

    Google Scholar 

  48. 48.

    Scheeres, D. J., Hartzell, C. M., Sánchez, P. & Swift, M. Scaling forces to asteroid surfaces: the role of cohesion. Icarus 210, 968–984 (2010).

    Article  Google Scholar 

  49. 49.

    Hartzell, C. & Scheeres, D. J. Dynamics of levitating dust particles near asteroids and the Moon. J. Geophys. Res. 118, 116–125 (2013).

    Article  Google Scholar 

  50. 50.

    Farrel, W. M. et al. Anticipated electrical environment at Phobos: nominal and solar storm conditions. Adv. Space Res. 62, 2199–2212 (2017).

    Article  Google Scholar 

  51. 51.

    Zhang, Y. et al. Rotational failure of rubble-pile bodies: influences of shear and cohesive strengths. Astrophys. J. 857, 15–35 (2018).

    Article  Google Scholar 

  52. 52.

    Jewitt, D. & Meech, K. J. Cometary grain scattering versus wavelength, or ‘What color is comet dust’? Astrophys. J. 310, 937–952 (1986).

    Article  Google Scholar 

  53. 53.

    Lazzarin, M. et al. Space weathering in the main asteroid belt: The big picture. Astrophys. J. 647, L179–L182 (2006).

    Article  Google Scholar 

  54. 54.

    Keller, L. P. et al. Direct determination of the space weathering rates in lunar soils and Itokawa regolith from sample analyses. Lunar Planet. Sci. Conf. 47, 2525 (2016).

    Google Scholar 

  55. 55.

    Hawke, B. R. et al. The origin of lunar crater rays. Icarus 170, 1–16 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

R.-L.B acknowledges support from JAXA’s Aerospace Project Research Associate Program. N.B. conducted this work as a JSPS International Research Fellow. S.T.C. was supported by the JAXA International Top Young Fellowship Program. The authors also thank P. Michel for constructive feedback on the results and implications of this work. Grain dynamics simulations were calculated on the YORP cluster run by the Center for Theory and Computation at the Department of Astronomy at the University of Maryland. For data visualization, the authors made use of the freeware, multi-platform, ray-tracing package, Persistence of Vision Raytracer.

Author information

Affiliations

Authors

Contributions

R.-L.B. conceptualized the study, designed and performed the local simulations of granular dynamics, and led the research. N.B. initiated the project through a study of the three-body elliptical problem on Phobos, performed the gravitational dynamics calculations, and contributed to the analyses. S.T.C. provided geophysical and geomorphological expertise, remote-sensing analysis, and constructed the model for regolith development on Phobos. Y.K. provided guidance and advice on the formulation and scope of the research. M.F. provided guidance and discourse on the implications of the results. Y.K. and M.F. provided expertise in small-body exploration and contextualized the research in the frame of the MMX mission. All authors contributed to the interpretation of the results and preparation of the manuscript.

Corresponding author

Correspondence to Ronald-Louis Ballouz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ballouz, RL., Baresi, N., Crites, S.T. et al. Surface refreshing of Martian moon Phobos by orbital eccentricity-driven grain motion. Nat. Geosci. 12, 229–234 (2019). https://doi.org/10.1038/s41561-019-0323-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing