Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Role of Asian summer monsoon subsystems in the inter-hemispheric progression of deglaciation


The responses of Asian monsoon subsystems to both hemispheric climate forcing and external orbital forcing are currently issues of vigorous debate. The Indian summer monsoon is the dominant monsoon subsystem in terms of energy flux, constituting one of Earth’s most dynamic expressions of ocean–atmosphere interactions. Yet, the Indian summer monsoon is grossly under-represented in Asian monsoon palaeoclimate records. Here, we present high-resolution records of Indian summer monsoon-induced rainfall and fluvial runoff recovered in a sediment core from the Bay of Bengal across Termination II, 139–127 thousand years ago, including coupled measurements of the oxygen isotopic composition and Mg/Ca, Mn/Ca, Nd/Ca and U/Ca ratios in surface-ocean-dwelling foraminifera. Our data reveal a millennial-scale transient strengthening of the Asian monsoon that punctuates Termination II associated with an oscillation of the bipolar seesaw. The progression of deglacial warming across Termination II emerges first in the Southern Hemisphere, then the tropics in tandem with Indian summer monsoon strengthening, and finally the Northern Hemisphere. We therefore suggest that the Indian summer monsoon was a conduit for conveying Southern Hemisphere latent heat northwards, thereby promoting subsequent Northern Hemisphere deglaciation.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: ISM-induced freshening in the Bay of Bengal.
Fig. 2: Sequences of global events.
Fig. 3: TII onset and duration.

Data availability

Data generated from this study (IODP Expedition 353; Site U1446) are available via the National Geoscience Data Centre ( Antarctic EDC ice core records presented on AICC2012 chronology are available from and The EASM composite speleothem δ18O record is available from The Bittoo Cave speleothem δ18O record is available from ODP 983 and 1063 data are available as a supplementary dataset associated with ref. 54. ODP 976 western Mediterranean Sea SST data on Corchia radiometrically constrained chronology are available as a supplementary dataset associated with ref. 27. Data on benthic δ18O levels of sediment core PS75/059-2 are available at Data from sediment core PS75/059-2 on AICC2012 chronology are available at


  1. 1.

    Kutzbach, J. E. Monsoon climate of the early Holocene: climate experiment with the Earth’s orbital parameters for 9000 years ago. Science 214, 59–61 (1981).

    Article  Google Scholar 

  2. 2.

    Kathayat, G. et al. Indian monsoon variability on millennial-orbital timescales. Sci. Rep. 6, 24374 (2016).

    Article  Google Scholar 

  3. 3.

    Deplazes, G. et al. Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard–Oeschger oscillations. Paleoceanogr. Paleoclimatol. 29, 99–114 (2014).

    Article  Google Scholar 

  4. 4.

    Tierney, J. E., Pausata, F. S. R. & deMenocal, P. Deglacial Indian monsoon failure and North Atlantic stadials linked by Indian Ocean surface cooling. Nat. Geosci. 9, 46–50 (2015).

    Article  Google Scholar 

  5. 5.

    Orland, I. J. et al. Direct measurements of deglacial monsoon strength in a Chinese stalagmite. Geology 43, 555–558 (2015).

    Article  Google Scholar 

  6. 6.

    Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).

    Article  Google Scholar 

  7. 7.

    Beck, J. W. et al. A 550,000-year record of East Asian monsoon rainfall from 10Be in loess. Science 360, 877–881 (2018).

    Article  Google Scholar 

  8. 8.

    Clemens, S. C. et al. Precession-band variance missing from East Asian monsoon runoff. Nat. Commun. 9, 3364 (2018).

    Article  Google Scholar 

  9. 9.

    Clemens, S. C. & Prell, W. L. 350,000 year summer-monsoon multi-proxy from the Owen Ridge, Northern Arabian Sea. Mar. Geol. 201, 35–51 (2003).

    Article  Google Scholar 

  10. 10.

    Caley, T. et al. New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon. Earth Planet. Sci. Lett. 308, 433–444 (2011).

    Article  Google Scholar 

  11. 11.

    Gebregiorgis, D. et al. Southern Hemisphere forcing of South Asian monsoon precipitation over the past ~1 million years. Nat. Commun. 9, 4702 (2018).

    Article  Google Scholar 

  12. 12.

    Le Mézo, P., Beaufort, L., Bopp, L., Braconnot, P. & Kageyama, M. From monsoon to marine productivity in the Arabian Sea: insights from glacial and interglacial climates. Clim. Past 13, 759–778 (2017).

    Article  Google Scholar 

  13. 13.

    Bazin, L. et al. An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Clim. Past 9, 1715–1731 (2013).

    Article  Google Scholar 

  14. 14.

    Sarin, M. M., Krishnaswami, S., Somayajulu, B. L. K. & Moore, W. S. Chemistry of uranium, thorium, and radium isotopes in the Ganga-Brahmaputra river system: weathering processes and fluxes into the Bay of Bengal. Geochim. Cosmochim. Acta 54, 1387–1396 (1990).

    Article  Google Scholar 

  15. 15.

    Singh, S. P. et al. Spatial distribution of dissolved neodymium and ε Nd in the Bay of Bengal: role of particulate matter and mixing of water mass. Geochim. Cosmochim. Acta 94, 38–56 (2012).

    Article  Google Scholar 

  16. 16.

    Yu, Z. et al. Seasonal variations in dissolved neodymium isotope composition in the Bay of Bengal. Earth Planet. Sci. Lett. 479, 310–321 (2017).

    Article  Google Scholar 

  17. 17.

    Vance, D. & Burton, K. Neodymium isotopes in planktonic foraminifera: a record of the response of continental weathering and ocean circulation rates to climate change. Earth Planet. Sci. Lett. 173, 365–379 (1999).

    Article  Google Scholar 

  18. 18.

    Pomiès, C., Davies, G. R. & Conan, S. M.-H. Neodymium in modern foraminifera from the Indian Ocean: implications for the use of foraminiferal Nd isotope compositions in paleo-oceanography. Earth Planet. Sci. Lett. 203, 1031–1045 (2002).

    Article  Google Scholar 

  19. 19.

    Martínez-Botí, M. A., Vance, D. & Mortyn, P. G. Nd/Ca ratios in plankton-towed and core top foraminifera: confirmation of the water column acquisition of Nd. Geochem. Geophys. Geosyst. 10, Q08018 (2009).

    Article  Google Scholar 

  20. 20.

    Boyle, E. A. & Keigwin, L. D. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: changes in deep ocean circulation and chemical inventories. Earth Planet. Sci. Lett. 76, 135–150 (1985).

    Article  Google Scholar 

  21. 21.

    Russell, A. N., Emerson, S., Nelson, B. K., Erez, J. & Lea, D. W. Uranium in foraminiferal calcite as recorder of seawater uranium concentrations. Geochim. Cosmochim. Acta 58, 671–681 (1994).

    Article  Google Scholar 

  22. 22.

    Abdi, H. & Williams, L. J. in Encyclopoedia of Research Design 935–938 (ed. Salkind, N.) (Sage, Thousand Oaks, 2010).

  23. 23.

    Dearing, J. A. & Jones, R. T. Coupling temporal and spatial dimensions of global sediment flux through lake and marine sediment records. Glob. Planet. Change 39, 147–168 (2003).

    Article  Google Scholar 

  24. 24.

    McCreary, J. P., Kundu, P. K. & Molinari, R. L. A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog. Oceanogr. 31, 181–244 (1993).

    Article  Google Scholar 

  25. 25.

    Barker, S. et al. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457, 1097–1101 (2009).

    Article  Google Scholar 

  26. 26.

    Broecker, W. S. & Henderson, G. M. The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes. Paleoceanogr. Paleoclimatol. 13, 352–364 (1998).

    Article  Google Scholar 

  27. 27.

    Marino, G. et al. Bipolar seesaw control on last interglacial sea level. Nature 522, 197–201 (2015).

    Article  Google Scholar 

  28. 28.

    Knorr, G. & Lohmann, G. Rapid transitions in the Atlantic thermohaline circulation triggered by global warming and meltwater during the last deglaciation. Geochem. Geophys. Geosyst. 8, Q12006 (2007).

    Article  Google Scholar 

  29. 29.

    Martrat, B., Jimenez-Amat, P., Zahn, R. & Grimalt, J. O. Similarities and dissimilarities between the last two deglaciations and interglaciations in the North Atlantic region. Quat. Sci. Rev. 99, 122–134 (2014).

    Article  Google Scholar 

  30. 30.

    Cheng, H. et al. Ice age terminations. Science 326, 248–252 (2009).

    Article  Google Scholar 

  31. 31.

    Scussolini, P., Marino, G., Brummer, G.-J. & Peeters, F. J. C. Saline Indian Ocean waters invaded the South Atlantic thermocline during glacial termination II. Geology 43, 139–142 (2015).

    Article  Google Scholar 

  32. 32.

    Carlson, A. E. & Winsor, K. Northern Hemisphere ice-sheet responses to past climate warming. Nat. Geosci. 5, 607–613 (2012).

    Article  Google Scholar 

  33. 33.

    Broccoli, A. J., Dahl, K. A. & Stouffer, R. J. Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett. 33, L01702 (2006).

    Article  Google Scholar 

  34. 34.

    Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article  Google Scholar 

  35. 35.

    Mantis, D. F. et al. The response of large-scale circulation to obliquity-induced changes in meridional heating gradients. J. Clim. 27, 5504–5516 (2014).

    Article  Google Scholar 

  36. 36.

    Mudelsee, M. Ramp function regression: a tool for quantifying climate transitions. Comput. Geosci. 26, 293–307 (2000).

    Article  Google Scholar 

  37. 37.

    Rodwell, M. J. & Hoskins, B. J. Subtropical anticyclones and summer monsoons. J. Clim. 14, 3192–3211 (2001).

    Article  Google Scholar 

  38. 38.

    Loulergue, L. et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, 383–386 (2008).

    Article  Google Scholar 

  39. 39.

    Wang, B., Clemens, S. C. & Liu, P. Contrasting the Indian and East Asian monsoons: implications on geologic timescales. Mar. Geol. 201, 5–21 (2003).

    Article  Google Scholar 

  40. 40.

    Caley, T., Roche, D. M. & Renssen, H. Orbital Asian summer monsoon dynamics revealed using an isotope-enabled global climate model. Nat. Commun. 5, 5371 (2014).

    Article  Google Scholar 

  41. 41.

    Rodgers, K. B. et al. A tropical mechanism for Northern Hemisphere deglaciation. Geochem. Geophys. Geosyst. 4, 1046 (2003).

    Article  Google Scholar 

  42. 42.

    Bolton, C. T. et al. A 500,000 year record of Indian summer monsoon dynamics recorded by eastern equatorial Indian Ocean upper water-column structure. Quat. Sci. Rev. 77, 167–180 (2013).

    Article  Google Scholar 

  43. 43.

    Budziak, D. et al. Late Quaternary insolation forcing on total organic carbon and C37 alkenone variations in the Arabian Sea. Paleoceanogr. Paleoclimatol. 15, 307–321 (2000).

    Article  Google Scholar 

  44. 44.

    Ziegler, M. et al. Precession phasing offset between Indian summer monsoon and Arabian Sea productivity linked to changes in Atlantic overturning circulation. Paleoceanogr. Paleoclimatol. 25, PA3213 (2010).

    Google Scholar 

  45. 45.

    Reichart, G.-J., Lourens, L. J. & Zachariasse, W. J. Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225,000 years. Paleoceanogr. Paleoclimatol. 13, 607–621 (1998).

    Article  Google Scholar 

  46. 46.

    Meissner, T. & Wentz, F. J. Remote Sensing Systems SMAP Ocean Surface Salinities (Level 3 Monthly) v.3.0 (Remote Sensing Systems, 2018);

  47. 47.

    Boyer, T. P. et al. World Ocean Database 2013 (National Environmental, Satellite, Data, and Information Service, 2013).

  48. 48.

    Barker, S. et al. Icebergs not the trigger for North Atlantic cold events. Nature 520, 333–336 (2015).

    Article  Google Scholar 

  49. 49.

    Kudrass, H. R., Hofmann, A., Doose, H., Emeis, K. & Erlenkeuser, H. Modulation and amplification of climatic changes in the Northern Hemisphere by the Indian summer monsoon during the past 80 k.y. Geology 29, 63–66 (2001).

    Article  Google Scholar 

  50. 50.

    Rashid, H., Flower, B. P., Poore, R. Z. & Quinn, T. M. A ~25 ka Indian Ocean monsoon variability record from the Andaman Sea. Quat. Sci. Rev. 26, 2586–2597 (2007).

    Article  Google Scholar 

  51. 51.

    Saraswat, R., Lea, D. W., Nigam, R., Mackensen, A. & Naik, D. K. Deglaciation in the tropical Indian Ocean driven by interplay between the regional monsoon and global teleconnections. Earth Planet. Sci. Lett. 375, 166–175 (2013).

    Article  Google Scholar 

  52. 52.

    Pahnke, K. & Sachs, J. P. Sea surface temperatures of southern midlatitudes 0–160 kyr B.P. Paleoceanogr. Paleoclimatol. 21, PA2003 (2006).

    Google Scholar 

  53. 53.

    Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–795 (2007).

    Article  Google Scholar 

  54. 54.

    Deaney, E. L., Barker, S. & van de Flierdt, T. Timing and nature of AMOC recovery across Termination 2 and magnitude of deglacial CO2 change. Nat. Commun. 8, 14595 (2017).

    Article  Google Scholar 

  55. 55.

    Clemens, S. C. et al. In Proc. International Ocean Discovery Program 353 (International Ocean Discovery Program, 2016).

  56. 56.

    Shenoi, S. S. C., Shankar, D. & Shetye, S. R. Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: implications for the summer monsoon. J. Geophys. Res. Oceans 107, 3052 (2002).

    Article  Google Scholar 

  57. 57.

    Varkey, M. J., Murty, V. S. N. & Suryanarayana, A. Physical oceanography of the Bay of Bengal and Andaman Sea. Oceanogr. Mar. Biol. Annu. Rev. 34, 1–70 (1996).

    Google Scholar 

  58. 58.

    Zweng, M. M. J. R. et al. World Ocean Atlas 2013. Volume 2: Salinity (eds Levitus, S. & Mishonov, A.) (National Environmental Satellite, Data, and Information Service, 2013).

  59. 59.

    Kemp, D. B. & Sexton, P. F. Time-scale uncertainty of abrupt events in the geologic record arising from unsteady sedimentation. Geology 42, 891–894 (2014).

    Article  Google Scholar 

  60. 60.

    Paillaird, D., Labeyrie, L. & Yiou, P. Macintosh Program performs time-series analysis. EOS Trans. 77, 379 (1996).

    Article  Google Scholar 

  61. 61.

    Ullermann, J. et al. Pacific–Atlantic circumpolar deep water coupling during the last 500 ka. Paleoceanogr. Paleoclimatol. 31, 639–650 (2016).

    Article  Google Scholar 

  62. 62.

    Lamy, F. et al. Increased dust deposition in the Pacific Southern Ocean during glacial periods. Science 343, 403–407 (2014).

    Article  Google Scholar 

  63. 63.

    Lambert, F. et al. Dust–climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452, 616–619 (2008).

    Article  Google Scholar 

  64. 64.

    Caballero-Gill, R. P., Clemens, S. C. & Prell, W. L. Direct correlation of Chinese speleothem δ18O and South China Sea planktonic δ18O: transferring a speleothem chronology to the benthic marine chronology. Paleoceanogr. Paleoclimatol. 27, PA2203 (2012).

    Google Scholar 

  65. 65.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed δ18O records. Paleoceanogr. Paleoclimatol. 20, PA1003 (2005).

    Google Scholar 

  66. 66.

    Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R. Stat. Soc. Ser. C 57, 339–418 (2008).

    Article  Google Scholar 

  67. 67.

    Wang, L. Isotopic signals in two morphotypes of Globigerinoides ruber (white) from the South China Sea: implications for monsoon climate change during the last glacial cycle. Palaeogeogr. Palaeoclimatol. Palaeoecol. 161, 381–394 (2000).

    Article  Google Scholar 

  68. 68.

    Rosenthal, Y., Boyle, E. A. & Labeyrie, L. Last Glacial Maximum paleochemistry and deepwater circulation in the Southern Ocean: evidence from foraminiferal cadmium. Paleoceanogr. Paleoclimatol. 12, 787–796 (1997).

    Article  Google Scholar 

  69. 69.

    Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003).

    Article  Google Scholar 

  70. 70.

    Gibbons, F. T. et al. Deglacial δ18O and hydrologic variability in the tropical Pacific and Indian oceans. Earth Planet. Sci. Lett. 387, 240–251 (2014).

    Article  Google Scholar 

  71. 71.

    Anand, P., Elderfield, H. & Conte, M. H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanogr. Paleoclimatol. 18, 1050 (2003).

    Google Scholar 

  72. 72.

    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).

    Article  Google Scholar 

  73. 73.

    Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and δ18O of the glacial deep ocean. Science 298, 1769–1773 (2002).

    Article  Google Scholar 

  74. 74.

    Bemis, B. E., Spero, H. J., Bijma, J. & Lea, D. W. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanogr. Paleoclimatol. 13, 150–160 (1998).

    Article  Google Scholar 

  75. 75.

    Singh, A., Jani, R. A. & Ramesh, R. Spatiotemporal variations of the δ18O–salinity relation in the northern Indian Ocean. Deep Sea. Res. Pt I 57, 1422–1431 (2010).

    Article  Google Scholar 

  76. 76.

    Delaygue, G. et al. Oxygen isotope/salinity relationship in the northern Indian Ocean. J. Geophys. Res. 106, 4565–4574 (2001).

    Article  Google Scholar 

  77. 77.

    Gray, W. R. et al. The effects of temperature, salinity, and the carbonate system on Mg/Ca in Globigerinoides ruber (white): a global sediment trap calibration. Earth Planet. Sci. Lett. 482, 607–620 (2018).

    Article  Google Scholar 

  78. 78.

    Ravelo, A. C. & Fairbanks, R. G. Oxygen isotopic composition of multiple species of planktonic Foraminifera: recorders of the modern photic zone temperature gradient. Paleoceanogr. Paleoclimatol. 7, 815–831 (1992).

    Article  Google Scholar 

  79. 79.

    Mohtadi, M. et al. Reconstructing the thermal structure of the upper ocean: insights from planktic foraminifera shell chemistry and alkenones in modern sediments of the tropical eastern Indian Ocean. Paleoceanogr. Paleoclimatol. 26, PA3219 (2011).

    Google Scholar 

  80. 80.

    Bevington, P. R. & Robinson, K. D. Data Reduction and Error Analysis for the Physical Sciences 3rd edn (McGraw-Hill, New York, 2003).

  81. 81.

    Thirumalai, K., Quinn, T. M. & Marino, G. Constraining past seawater δ18O and temperature records developed from foraminiferal geochemistry. Paleoceanogr. Paleoclimatol. 31, 1409–1422 (2016).

    Article  Google Scholar 

  82. 82.

    Milliman, J. D. & Syvitski, J. P. M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992).

    Article  Google Scholar 

  83. 83.

    Stewart, J. A., James, R. H., Anand, P. & Wilson, P. A. Silicate weathering and carbon cycle controls on the Oligocene–Miocene glaciation. Paleoceanogr. Paleoclimatol. 32, 1070–1085 (2017).

    Article  Google Scholar 

  84. 84.

    Stewart, J. A., Gutjahr, M., James, R. H., Anand, P. & Wilson, P. A. Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene–Miocene transition. Earth Planet. Sci. Lett. 454, 132–141 (2016).

    Article  Google Scholar 

  85. 85.

    Calvert, S. E. & Price, N. B. Diffusion and reaction profiles of dissolved manganese in the pore waters of marine sediments. Earth Planet. Sci. Lett. 16, 245–249 (1972).

    Article  Google Scholar 

  86. 86.

    Thomson, J., Higgs, N. C., Croudace, I. W., Colley, S. & Hydes, D. J. Redox zonation of elements at an oxic/post-oxic boundary in deep-sea sediments. Geochim. Cosmochim. Acta. 57, 579–595 (1993).

    Article  Google Scholar 

  87. 87.

    Calvert, S. E. & Pedersen, T. F. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Mar. Geol. 113, 67–88 (1993).

    Article  Google Scholar 

  88. 88.

    Burdige, D. J. The biogeochemistry of manganese and iron reduction in marine sediments. Earth Sci. Rev. 35, 249–284 (1993).

    Article  Google Scholar 

  89. 89.

    Yarincik, K. M., Murray, R. W., Lyons, T. W., Peterson, L. C. & Haug, G. H. Oxygenation history of bottom waters in the Cariaco Basin, Venezuela, over the past 578,000 years: results from redox-sensitive metals (Mo, V, Mn, and Fe). Paleoceanogr. Paleoclimatol. 15, 593–604 (2000).

    Article  Google Scholar 

  90. 90.

    Carlson, A. E. Why there was not a Younger Dryas-like event during the Penultimate Deglaciation. Quat. Sci. Rev. 27, 882–887 (2008).

    Article  Google Scholar 

  91. 91.

    Alley, R. B., Brook, E. J. & Anandakrishnan, S. A northern lead in the orbital band: north–south phasing of Ice-Age events. Quat. Sci. Rev. 21, 431–441 (2002).

    Article  Google Scholar 

  92. 92.

    Hays, J. D., Imbrie, K. & Shackleton, N. J. Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194, 1121–1132 (1974).

    Article  Google Scholar 

  93. 93.

    Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).

    Article  Google Scholar 

  94. 94.

    He, F. et al. Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature 494, 81–85 (2013).

    Article  Google Scholar 

  95. 95.

    Masson-Delmotte, V. et al. Abrupt change of Antarctic moisture origin at the end of Termination II. Proc. Natl Acad. Sci. USA 107, 12091–12094 (2010).

    Article  Google Scholar 

Download references


We thank P. Webb for help setting up the pXRF analysis, H. Sloane for help with the stable isotope analysis, and P. D. Naidu for providing the 2005 NBBT-05-S sediment traps. P.A. would like to express gratitude to Ministry of Earth Sciences, Government of India, for drilling permissions for Expedition 353 and UK-IODP for funding support. P.A. would also like to thank Expedition 353 shipboard scientists for their efforts and Kochi Core Repository, Japan, for sampling support. SMAP salinity data are produced by Remote Sensing Systems and sponsored by the NASA Ocean Salinity Science Team. P.A. and K.N.-K. acknowledge funding through a NERC PhD grant (NE/L002493/1) associated with the CENTA Doctoral Training Partnership. Samples were provided by the IODP. Stable isotope analysis of planktic foraminifera was funded by NIGFSC grant IP-1649-1116 to P.A.

Author information




P.A. conceived the research idea and further developed it with K.N.-K. K.N.-K. processed samples, picked foraminifera, and conducted foraminifera cleaning and trace element analysis under guidance from P.A. and S.M. M.J.L. oversaw the stable isotope analysis. S.J.H. helped with trace element analysis. S.C.C. produced benthic oxygen isotope data for age model development. K.N.-K., P.A. and P.F.S. discussed data interpretation and wrote the manuscript. All authors contributed to the final text.

Corresponding authors

Correspondence to K. Nilsson-Kerr or P. Anand.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures, Tables, Discussions

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nilsson-Kerr, K., Anand, P., Sexton, P.F. et al. Role of Asian summer monsoon subsystems in the inter-hemispheric progression of deglaciation. Nat. Geosci. 12, 290–295 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing