With ongoing global warming, the amount and frequency of precipitation in the tropics is projected to change substantially. While it has been shown that tropical forests and savannahs are sustained within the same intermediate mean annual precipitation range, the mechanisms that lead to the resilience of these ecosystems are still not fully understood. In particular, the long-term impact of rainfall variability on resilience is as yet unclear. Here we present observational evidence that both tropical forest and savannah exposed to a higher rainfall variability—in particular on interannual scales—during their long-term past are overall more resilient against climatic disturbances. Based on precipitation and tree cover data in the Brazilian Amazon basin, we constructed potential landscapes that enable us to systematically measure the resilience of the different ecosystems. Additionally, we infer that shifts from forest to savannah due to decreasing precipitation in the future are more likely to occur in regions with a precursory lower rainfall variability. Long-term rainfall variability thus needs to be taken into account in resilience analyses and projections of vegetation response to climate change.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Code availability

The computer code used for this study is available on request.

Data availability

The data reported in this paper are extracted from the publicly available sites of MODIS (https://lpdaac.usgs.gov/)52, IBGE (https://www.ibge.gov.br/)45 and CRU (https://crudata.uea.ac.uk/)19.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

  2. 2.

    Huntingford, C. et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6, 268–273 (2013).

  3. 3.

    Rammig, A. et al. Estimating the risk of Amazonian forest dieback. New Phytol. 187, 694–706 (2010).

  4. 4.

    Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).

  5. 5.

    McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).

  6. 6.

    Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

  7. 7.

    Staal, A., Dekker, S. C., Xu, C. & van Nes, E. H. Bistability, spatial interaction, and the distribution of tropical forests and savannahs. Ecosystems 19, 1080–1091 (2016).

  8. 8.

    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).

  9. 9.

    Gunderson, L. H. Ecological resilience—in theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).

  10. 10.

    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

  11. 11.

    Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl Acad. Sci. USA 111, 041–16,046 (2014).

  12. 12.

    Xu, X. et al. Tree cover shows strong sensitivity to precipitation variability across the global tropics. Glob. Ecol. Biogeogr. 27, 450–460 (2018).

  13. 13.

    Flores, B. M. et al. Floodplains as an Achilles’ heel of Amazonian forest resilience. Proc. Natl Acad. Sci. USA 114, 4442–4446 (2017).

  14. 14.

    Anderegg, W. R. et al. Tree mortality predicted from drought-induced vascular damage. Nat. Geosci. 8, 367–371 (2015).

  15. 15.

    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

  16. 16.

    Holmgren, M., Hirota, M., van Nes, E. H. & Scheffer, M. Effects of interannual climate variability on tropical tree cover. Nat. Clim. Chang 3, 755–758 (2013).

  17. 17.

    Magrin, G. O. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1499–1566 (IPCC, Cambridge Univ. Press, 2014).

  18. 18.

    Hansen, M. C. et al. Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm. Earth Interact. 7, 1–15 (2003).

  19. 19.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

  20. 20.

    Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).

  21. 21.

    Livina, V. N., Kwasniok, F. & Lenton, T. M. Potential analysis reveals changing number of climate states during the last 60 kyr. Clim. Past Discuss. 6, 77–82 (2010).

  22. 22.

    Scheffer, M., Carpenter, S. R., Dakos, V. & van Nes, E. H. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145–167 (2015).

  23. 23.

    Walker, B., Holling, C. S., Carpenter, S. R. & Kinzig, A. Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc. 9, 5 (2004).

  24. 24.

    Menck, P. J., Heitzig, J., Marwan, N. & Kurths, J. How basin stability complements the linear-stability paradigm. Nat. Phys. 9, 89–92 (2013).

  25. 25.

    Engelbrecht, B. M. J. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).

  26. 26.

    Esquivel-Muelbert, A. et al. Seasonal drought limits tree species across the neotropics. Ecography 40, 618–629 (2017).

  27. 27.

    Esquivel-Muelbert, A. et al. Biogeographic distributions of neotropical trees reflect their directly measured drought tolerances. Sci. Rep. 7, 1–11 (2017).

  28. 28.

    Poorter, L. & Markesteijn, L. Seedling traits determine drought tolerance of tropical tree species. Biotropica 40, 321–331 (2007).

  29. 29.

    Cosme, L. H. M., Schietti, J., Costa, F. R. C. & Oliveira, R. S. The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytol. 215, 113–125 (2017).

  30. 30.

    Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015).

  31. 31.

    Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytol. 221, 1457–1465 (2019).

  32. 32.

    Walker, B. & Salt, D. Resilience Thinking: Sustaining Ecosystems and People in a Changing World (Island Press, Washington DC, 2012).

  33. 33.

    Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538 (2018).

  34. 34.

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

  35. 35.

    Anderegg, W. R. L. et al. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc. Natl Acad. Sci. USA 109, 233–237 (2012).

  36. 36.

    Guidão, P., Ruggiero, C., Batalha, M. A. & Pivello, V. R. Soil–vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol. 60, 1–16 (2002).

  37. 37.

    Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 6, 1032–1036 (2016).

  38. 38.

    Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 1–9 (2017).

  39. 39.

    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

  40. 40.

    Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation–atmosphere feedbacks. Nat. Commun. 8, 1–10 (2017).

  41. 41.

    Staver, A. C. & Hansen, M. C. Analysis of stable states in global savannas: is the CART pulling the horse? A comment. Glob. Ecol. Biogeogr. 24, 985–987 (2015).

  42. 42.

    Hanan, N. P., Tredennick, A. T., Prihodko, L., Bucini, G. & Dohn, J. Analysis of stable states in global savannas: is the CART pulling the horse? Glob. Ecol. Biogeogr. 23, 259–263 (2014).

  43. 43.

    Hanan, N. P., Tredennick, A. T., Prihodko, L., Bucini, G. & Dohn, J. Analysis of stable states in global savannas—a response to Saver and Hansen. Glob. Ecol. Biogeogr. 24, 988–989 (2015).

  44. 44.

    Gerard, F. et al. MODIS VCF should not be used to detect discontinuities in tree cover due to binning bias. A comment on Hanan et al. (2014) and Staver and Hansen (2015). Glob. Ecol. Biogeogr. 26, 854–859 (2017).

  45. 45.

    Cobertura e uso da terra 2012 (IBGE, accessed 3 February 2019); ftp://geoftp.ibge.gov.br/informacoes_ambientais/cobertura_e_uso_da_terra/mudancas/vetores/

  46. 46.

    Markham, C. G. Seasonality of precipitation in the United States. Ann. Assoc. Am. Geogr. 60, 593–597 (1970).

  47. 47.

    Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

  48. 48.

    Mitra, C., Kurths, J. & Donner, R. V. An integrative quantifier of multistability in complex systems based on ecological resilience. Sci. Rep. 5, 16196 (2015).

  49. 49.

    Gardiner, C. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer, Berlin, 2004).

  50. 50.

    Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction—The ISI-MIP approach. Earth Syst. Dyn. 4, 219–236 (2013).

  51. 51.

    Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

  52. 52.

    Dimiceli, C. et al. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015); https://doi.org/10.5067/MODIS/MOD44B.006

Download references


We thank S. Lange for providing the global climate model data. We thank E. H. van Nes for the helpful introduction in computing potential landscapes. This paper was developed within the scope of the IRTG 1740/TRP 2015/50122-0, funded by the DFG/FAPESP. C.C. acknowledges the project grant BMBF 01LN1306A. M.H. and R.S.O. acknowledge the project grants Microsoft/FAPESP 2013/50169–1 and 2011/52072-0, as well as Instituto Serrapilheira/Serra-1709–18983. N.B. acknowledges funding by the German Science Foundation (DFG, Reference BO 4455/1–1). R.W. is thankful for support by the Leibniz Association (project DominoES).

Author information


  1. Potsdam Institute for Climate Impact Research, Potsdam, Germany

    • Catrin Ciemer
    • , Niklas Boers
    • , Jürgen Kurths
    • , Finn Müller-Hansen
    •  & Ricarda Winkelmann
  2. Department of Physics, Humboldt University, Berlin, Germany

    • Catrin Ciemer
    • , Jürgen Kurths
    •  & Finn Müller-Hansen
  3. Grantham Institute - Climate Change and the Environment, Imperial College London, London, UK

    • Niklas Boers
  4. Department of Physics, Federal University of Santa Catarina, Florianópolis, Brazil

    • Marina Hirota
  5. Institute of Biology, University of Campinas, Campinas, Brazil

    • Marina Hirota
    •  & Rafael S. Oliveira
  6. Saratov State University, Saratov, Russia

    • Jürgen Kurths
  7. Physics Institute, University of Potsdam, Potsdam, Germany

    • Ricarda Winkelmann


  1. Search for Catrin Ciemer in:

  2. Search for Niklas Boers in:

  3. Search for Marina Hirota in:

  4. Search for Jürgen Kurths in:

  5. Search for Finn Müller-Hansen in:

  6. Search for Rafael S. Oliveira in:

  7. Search for Ricarda Winkelmann in:


C.C., N.B., M.H. and R.W. conceived the study and prepared the manuscript with contributions from R.S.O. C.C. performed the analyses. All the authors discussed the results and contributed to editing the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Catrin Ciemer or Ricarda Winkelmann.

Supplementary information

  1. Supplementary Information

    Supplementary Figures and Discussion

About this article

Publication history




Issue Date