Abstract

The mantle sources of mid-ocean ridge basalts beneath the Indian and Pacific oceans have distinct isotopic compositions with a long-accepted boundary at the Australian–Antarctic Discordance along the Southeast Indian Ridge. This boundary has been widely used to place constraints on large-scale patterns of mantle flow and composition in the Earth’s upper mantle. Sampling between the Indian and Pacific ridges, however, has been lacking, especially along the remote 2,000 km expanse of the Australian–Antarctic Ridge. Here we present Sr, Nd, Hf and Pb isotope data from this region that show the Australian–Antarctic Ridge has isotopic compositions distinct from both the Pacific and Indian mantle domains. These data define a separate Zealandia–Antarctic domain that appears to have formed in response to the deep mantle upwelling and ensuing volcanism that led to the break-up of Gondwana 90 million years ago, and currently persists at the margins of the Antarctic continent. The relatively shallow depths of the Australian–Antarctic Ridge may be the result of this deep mantle upwelling. Large offset transforms to the east may be the boundary with the Pacific domain.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The authors declare that the data supporting the findings of this study are available in Supplementary Tables 1 and 2.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Hofmann, A. W. in Treatise on Geochemistry 2nd edn, Vol. 3 (ed. Carlson, R. W.) 67–101 (Elsevier, Amsterdam, 2014).

  2. 2.

    White, W. M. Probing the Earth’s deep interior through geochemistry. Geochem. Perspect. 4, 95–246 (2015).

  3. 3.

    Hamelin, B. D. & Allègre, C. J. Large scale regional units in the depleted upper mantle revealed by an isotope study of the South-West Indian Ridge. Nature 315, 196–199 (1985).

  4. 4.

    Vlastélic, I. et al. Large-scale chemical and thermal division of the Pacific mantle. Nature 399, 345–350 (1999).

  5. 5.

    Kempton, P. D. et al. Sr–Nd–Pb–Hf isotope results from ODP Leg 187: evidence for mantle dynamics of the Australian–Antarctic Discordance and origin of the Indian MORB source. Geochem. Geophys. Geosyst. 3, 1074 (2002).

  6. 6.

    Hanan, B. B., Blichert-Toft, J., Pyle, D. G. & Christie, D. M. Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature 432, 91–94 (2004).

  7. 7.

    Klein, E. M., Langmuir, C. H., Zindler, A., Staudigel, H. & Hamelin, B. Isotopic evidence of a mantle convection boundary at the Australian–Antarctic Discordance. Nature 133, 623–629 (1988).

  8. 8.

    Pyle, D. G., Christie, D. M., Mahoney, J. J. & Duncan, R. A. Geochemistry and geochronology of ancient southeast Indian and southwest Pacific seafloor. J. Geophys. Res. 100, 22261–22282 (1995).

  9. 9.

    Christie, D. M., West, B. P., Pyle, D. G. & Hanan, B. B. Chaotic topography, mantle flow and mantle migration in the Australian-Antarctic discordance. Nature 394, 637–644 (1998).

  10. 10.

    Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J. G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).

  11. 11.

    Blichert-Toft, J. & White, W. M. Hf isotope geochemistry of the Galapagos Islands. Geochem. Geophys. Geosyst. 2, 2000GC000138 (2001).

  12. 12.

    Hart, S. R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753–757 (1984).

  13. 13.

    Sims, K. W. W. et al. A Sr, Nd, Hf, and Pb isotope perspective on the genesis and long-term evolution of alkaline magmas from Erebus volcano, Antarctica. J. Volcanol. Geotherm. Res. 177, 606–618 (2008).

  14. 14.

    Phillips, E. H. et al. The nature and evolution of mantle upwelling at Ross Island, Antarctica, with implications for the HIMU source. Earth Planet. Sci. Lett. 498, 38–53 (2018).

  15. 15.

    Rocholl, A., Stein, M., Molzahn, M., Hart, S. R. & Wörner, G. Geochemical evolution of rift magmas by progressive tapping of a stratified mantle source beneath the Ross Sea Rift, Northern Victoria Land, Antarctica. Earth Planet. Sci. Lett. 131, 207–224 (1995).

  16. 16.

    Rocchi, S. et al. Cenozoic magmatism in the western Ross embayment: role of mantle plume versus plate dynamics in the development of the West Antarctic Rift system. J. Geophys. Res. 107, 2195 (2002).

  17. 17.

    Nardini, I., Armienti, P., Rocchi, S., Dallai, L. & Harrison, D. Sr–Nd–Pb–He–O isotope and geochemical constraints on the genesis of Cenozoic magmas from the West Antarctic Rift. J. Petrol. 50, 1359–1375 (2009).

  18. 18.

    Aviado, K. B., Rilling-Hall, S., Bryce, J. G. & Mukasa, S. B. Submarine and subaerial lavas in the West Antarctica Rift system: temporal record of shifting magma source components from the lithosphere and asthenosphere.Geochem. Geophys. Geosyst. 16, 4344–4361 (2015).

  19. 19.

    Lanyon, R., Varne, R. & Crawford, A. J. Tasman tertiary basalts, the Balleny plume, and opening of the Tasman Sea (southwest Pacific Ocean). Geology 21, 555–558 (1993).

  20. 20.

    Kamenetsky, V. S. & Maas, R. Mantle-melt evolution (dynamic source) in the origin of a single MORB suite: a perspective from magnesian glasses of Macquarie Island. J. Petrol. 43, 1902–1922 (2002).

  21. 21.

    Hoernle, K. et al.Cenozoic intraplate volcanism on New Zealand: upwelling induced by lithospheric removal. Earth Planet. Sci. Lett. 248, 350–367 (2006).

  22. 22.

    Panter, K. S. et al. The origin of HIMU in the SW Pacific: evidence from intraplate volcanism in southern New Zealand and subantarctic islands. J. Petrol. 47, 1673–1704 (2006).

  23. 23.

    Timm, C., Hoernle, K., van den Boggard, P., Bindeman, I. & Weaver, S. Geochemical evolution of intraplate volcanism at Banks Peninsula, New Zealand: interaction between asthenispheric and lithospheric melts. J. Petrol. 50, 989–1023 (2009).

  24. 24.

    Timm, C. et al. Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia. Earth Sci. Rev. 98, 38–64 (2010).

  25. 25.

    Hart, S. R., Blusztajn, J., LeMasurier, W. E. & Rex, D. C. Hobbs coast Cenozoic volcanism: implications for the West Antarctic Rift system. Chem. Geol. 139, 223–248 (1997).

  26. 26.

    Panter, K. S., Hart, S. R., Kyle, P., Blusztajn, J. & Wilch, T. Geochemistry of Late Cenozoic basalts from the Crary Mountains: characterization of mantle sources in Marie Byrd Land, Antarctica. Chem. Geol. 165, 215–241 (2000).

  27. 27.

    Frey, F. A., Green, D. H. & Roy, S. D. Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data. J. Petrol. 19, 463–513 (1978).

  28. 28.

    O’Reilley, S. Y. & Zhang, M. Geochemical characteristics of lava-field basalts from eastern Australia and inferred sources: connections with the subcontinental lithospheric mantle? Contrib. Mineral. Petrol. 121, 148–170 (1995).

  29. 29.

    Zhang, M. & O’Reilley, S. Y. Multiple sources for basaltic rocks from Dubbo, eastern Australia: geochemical evidence for plume–lithospheric mantle interaction. Chem. Geol. 136, 33–54 (1997).

  30. 30.

    Zhang, M., O’Reilley, S. Y. & Chen, D. Location of Pacific and Indian mid-ocean ridge-type mantle in two time slices: evidence from Pb, Sr, and Nd isotopes for Cenozoic Australian basalts. Geology 27, 39–42 (1999).

  31. 31.

    McBride, J. S., Lambert, D. D., Nicholls, I. A. & Price, R. C. Osmium isotopic evidence for crust–mantle interaction in the genesis of continental intraplate basalts from the newer volcanics province, southeastern Australia. J. Petrol. 42, 1197–1218 (2001).

  32. 32.

    Hoernle, K. et al. Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic plateaus. Geochim. Cosmochim. Acta 74, 7196–7219 (2010).

  33. 33.

    Storey, B. C. et al. Mantle plumes and Antarctica–New Zealand rifting: evidence from Mid-Cretaceous mafic dykes. J. Geol. Soc. Lond. 156, 659–671 (1999).

  34. 34.

    Yamamoto, M., Phipps Morgan, J. & Morgan, W. J. in Plates, Plumes, and Planetary Processes (eds Foulger, G. R. & Jurdy, D. M.) 165–188 (Geol. Soc. Am. Spec. Paper 430, Geological Society of America, 2007).

  35. 35.

    Yamamoto, M., Phipps Morgan, J., & Morgan, W. J. in Plates, Plumes, and Planetary Processes (eds Foulger, G. R. & Jurdy, D. M.) 189–208 (Geol. Soc. Am. Spec. Paper 430, Geological Society of America, 2007).

  36. 36.

    Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).

  37. 37.

    Finn, C. A., Müller, R. D. & Panter, K. S. A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific without rift or plume origin. Geochem. Geophys. Geosyst. 6, Q02005 (2005).

  38. 38.

    Kipf, A. et al. Seamounts off the West Antarctic margin: a case for non-hotspot driven intraplate volcanism. Gondwana Res. 25, 1660–1679 (2014).

  39. 39.

    Larsen, H. C. et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nat. Geosci. 11, 782–789 (2018).

  40. 40.

    Ritsema, J., Deuss, A., van Heijst, H. J. & Woodhouse, J. H. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic travel time and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

  41. 41.

    French, S., Lekic, V. & Romanowicz, B. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science 342, 227–230 (2013).

  42. 42.

    Koelemeijer, P., Ritsema, J., Deuss, A. & van Heijst, H.-J. SP12RTS: a degree-12 model of shear- and compressional-wave velocity for Earth’s mantle. Geophys. J. Int. 204, 1024–1039 (2016).

  43. 43.

    Langmuir, C. H., Klein, E. M. & Plank, T. in Mantle Flow and Melt Generation Beneath Ocean Ridges (eds Morgan, J. P., Blackman, D. K. & Sinton, J. M.) 183–280 (Geophysical Monograph Series 71, American Geophysical Union, 1992).

  44. 44.

    Hansen, S. E. et al. Imaging the Antarctic mantle using adaptively parameterized P-wave tomography: evidence for heterogeneous structure beneath West Antarctica. Earth Planet. Sci. Lett. 408, 66–78 (2014).

  45. 45.

    Schilling, J.-G. et al. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29° N to 73° N. Am. J. Sci. 283, 510–586 (1983).

  46. 46.

    Langmuir, C. H. & Bender, J. F. The geochemistry of oceanic basalts in the vicinity of transform faults: observations and implications. Earth Planet. Sci. Lett. 69, 107–127 (1984).

  47. 47.

    Blichert‐Toft, J. A., Andres, A., Kingsley, M. R., Schilling, J.-G. & Albarède, F. Geochemical segmentation of the Mid‐Atlantic Ridge north of Iceland and ridge–hot spot interaction in the North Atlantic. Geochem. Geophys. Geosyst. 6, Q01E19 (2005).

  48. 48.

    Schilling, J.-G., Kingsley, R., Hanan, B. & McCully, B. Nd–Sr–Pb isotopic variations along the Gulf of Aden: evidence for the Afar mantle plume–lithosphere interaction. J. Geophys. Res. 97, 10927–10966 (1992).

  49. 49.

    Canales, J. P., Ito, G., Detrick, R. S. & Sinton, J. Crustal thickness along the western Galápagos Spreading Center and the compensation of the Galápagos hotspot swell. Earth Planet. Sci. Lett. 203, 311–327 (2002).

  50. 50.

    Schilling, J. G., Fontignie, D., Blichert-Toft, J., Kingsley, R. & Tomza, U. Pb–Hf–Nd–Sr isotope variations along the Galápagos Spreading Center (101–83° W): constraints on the dispersal of the Galápagos mantle plume. Geochem. Geophys. Geosyst. 4, 8512 (2003).

  51. 51.

    Hanan, B. B. et al. Pb and Hf isotope variations along the Southeast Indian Ridge and the dynamic distribution of MORB source domains in the upper mantle. Earth Planet. Sci. Lett. 375, 196–208 (2013).

  52. 52.

    Hamelin, C. et al. Geochemical portray of the Pacific Ridge: new isotopic data and statistical techniques. Earth Planet. Sci. Lett. 302, 154–162 (2011).

  53. 53.

    Chauvel, C., Lewin, E., Carpentier, M., Arndt, N. T. & Marini, J.-C. Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nat. Geosci. 1, 64–67 (2008).

  54. 54.

    Langmuir, C. H., Vocke, R. D. Jr, Hanson, G. N. & Hart, S. R. A general mixing equation with applications to Icelandic basalts. Earth Planet. Sci. Lett. 37, 380–392 (1978).

  55. 55.

    French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

  56. 56.

    Sims, K. W. W. et al. Short length scale mantle heterogeneity beneath Iceland probed by glacial modulation of melting. Earth Planet. Sci. Lett. 379, 146–157 (2013).

  57. 57.

    Strelow, F. W. E. & Toerien, F. von S. Separation of lead(ii) from bismuth (iii), thallium (iii), cadmium(ii), mercury(ii), gold(iii), platinum(iv), palladium(ii), and other elements by anion exchange chromatography. Anal. Chem. 38, 545–548 (1966).

  58. 58.

    Thirlwall, M. Multicollector ICP-MS analysis of Pb isotopes using a 207Pb–204Pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization. Chem. Geol. 184, 255–279 (2002).

  59. 59.

    Blichert-Toft, J., Chauvel, C. & Albarede, F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib. Mineral. Petr. 127, 248–260 (1997).

Download references

Acknowledgements

This study was supported by KOPRI grant nos PP13040 and PE18050 to S.-H.P. Support at Harvard, Wyoming, Woods Hole and Tulsa was provided by the National Science Foundation (OCE1259916). J.B.-T. was supported by the French Agence Nationale de la Recherche through grant no. ANR-10-BLAN-0603 (M&Ms—Mantle Melting—Measurements, Models, Mechanisms). S.-S.K. was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A02018632). J.L. was also supported by the CAS through grant no.Y4SL021001 and NSFC through grant no. 91628301. We thank the captain and crew of the icebreaker RV Aaron for support under difficult sea conditions. We appreciate the constructive reviews by J. Morgan and P. Kempton.

Author information

Affiliations

  1. Korea Polar Research Institute, Incheon, Republic of Korea

    • Sung-Hyun Park
    • , Hakkyum Choi
    •  & Yun-Seok Yang
  2. Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA

    • Charles H. Langmuir
  3. Department of Geology and Geophysics, University of Wyoming, Laramie, WY, USA

    • Kenneth W. W. Sims
    •  & Sean R. Scott
  4. Laboratoire de Géologie de Lyon, Ecole Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, CNRS UMR 5276, Lyon, France

    • Janne Blichert-Toft
  5. Department of Geology and Earth Environmental Sciences, Chungnam National University, Daejeon, Republic of Korea

    • Seung-Sep Kim
  6. Departement of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

    • Jian Lin
  7. Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

    • Jian Lin
  8. Department of Geosciences, University of Tulsa, Tulsa, OK, USA

    • Peter J. Michael

Authors

  1. Search for Sung-Hyun Park in:

  2. Search for Charles H. Langmuir in:

  3. Search for Kenneth W. W. Sims in:

  4. Search for Janne Blichert-Toft in:

  5. Search for Seung-Sep Kim in:

  6. Search for Sean R. Scott in:

  7. Search for Jian Lin in:

  8. Search for Hakkyum Choi in:

  9. Search for Yun-Seok Yang in:

  10. Search for Peter J. Michael in:

Contributions

S-H.P. led the KOPRIDGE project, which included three cruises, interpreted the data and wrote the first draft of the manuscript. C.H.L. contributed to the initial stage of cruise planning, geochemical interpretations and manuscript preparation and editing, and participated in the 2011 cruise. K.W.W.S. oversaw the isotopic analyses by S.R.S. and contributed to the geochemical interpretations and manuscript preparation and editing. J.B.-T. oversaw and participated in the Hf isotopic analyses by S.R.S. and contributed to the geochemical interpretations and manuscript preparation and editing. S.-S.K. contributed to the cruise design, performed geophysical data analyses and interpretations, and contributed to manuscript writing and editing. S.R.S. performed the Sr, Nd, Hf and Pb isotopic analyses and contributed to the table preparation, geochemical interpretations and manuscript editing. J.L. contributed to the cruise design, performed geophysical data analyses and interpretations, participated in the 2011 cruise and contributed to manuscript editing. H.C. and Y.-S.Y. contributed to the cruises and produced the relevant figures and maps. P.J.M. was involved in the cruise planning, geochemical interpretation and manuscript editing. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Sung-Hyun Park.

Supplementary information

  1. Supplementary data Table 1

    Sr-Nd-Pb-Hf isotope data from KR1 and KR2

  2. Supplementary data table 2

    Standard and reference material data

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41561-018-0292-4

Further reading