An isotopically distinct Zealandia–Antarctic mantle domain in the Southern Ocean

Abstract

The mantle sources of mid-ocean ridge basalts beneath the Indian and Pacific oceans have distinct isotopic compositions with a long-accepted boundary at the Australian–Antarctic Discordance along the Southeast Indian Ridge. This boundary has been widely used to place constraints on large-scale patterns of mantle flow and composition in the Earth’s upper mantle. Sampling between the Indian and Pacific ridges, however, has been lacking, especially along the remote 2,000 km expanse of the Australian–Antarctic Ridge. Here we present Sr, Nd, Hf and Pb isotope data from this region that show the Australian–Antarctic Ridge has isotopic compositions distinct from both the Pacific and Indian mantle domains. These data define a separate Zealandia–Antarctic domain that appears to have formed in response to the deep mantle upwelling and ensuing volcanism that led to the break-up of Gondwana 90 million years ago, and currently persists at the margins of the Antarctic continent. The relatively shallow depths of the Australian–Antarctic Ridge may be the result of this deep mantle upwelling. Large offset transforms to the east may be the boundary with the Pacific domain.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Bathymetry and along-axis variations in depth, 206Pb/204Pb and εHf for the KR1 and KR2 segments of the AAR.
Fig. 2: Comparisons of isotope ratios from the KR1 and KR2 segments and other mid-ocean ridge basalts.
Fig. 3: Δ8/4 and Δ7/6 variations.
Fig. 4: Comparison of isotope ratios from KR1 and KR2 with Gondwana margin locations (Zealandia, WARS, Balleny and Scott Islands, Marie Byrd Land and East Australia).
Fig. 5: Location of the Zealandia–Antarctic mantle domain.
Fig. 6: Maps of shear-wave velocity variations dln VS in the Southern Ocean.

Data availability

The authors declare that the data supporting the findings of this study are available in Supplementary Tables 1 and 2.

References

  1. 1.

    Hofmann, A. W. in Treatise on Geochemistry 2nd edn, Vol. 3 (ed. Carlson, R. W.) 67–101 (Elsevier, Amsterdam, 2014).

  2. 2.

    White, W. M. Probing the Earth’s deep interior through geochemistry. Geochem. Perspect. 4, 95–246 (2015).

    Article  Google Scholar 

  3. 3.

    Hamelin, B. D. & Allègre, C. J. Large scale regional units in the depleted upper mantle revealed by an isotope study of the South-West Indian Ridge. Nature 315, 196–199 (1985).

    Article  Google Scholar 

  4. 4.

    Vlastélic, I. et al. Large-scale chemical and thermal division of the Pacific mantle. Nature 399, 345–350 (1999).

    Article  Google Scholar 

  5. 5.

    Kempton, P. D. et al. Sr–Nd–Pb–Hf isotope results from ODP Leg 187: evidence for mantle dynamics of the Australian–Antarctic Discordance and origin of the Indian MORB source. Geochem. Geophys. Geosyst. 3, 1074 (2002).

    Article  Google Scholar 

  6. 6.

    Hanan, B. B., Blichert-Toft, J., Pyle, D. G. & Christie, D. M. Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature 432, 91–94 (2004).

    Article  Google Scholar 

  7. 7.

    Klein, E. M., Langmuir, C. H., Zindler, A., Staudigel, H. & Hamelin, B. Isotopic evidence of a mantle convection boundary at the Australian–Antarctic Discordance. Nature 133, 623–629 (1988).

    Article  Google Scholar 

  8. 8.

    Pyle, D. G., Christie, D. M., Mahoney, J. J. & Duncan, R. A. Geochemistry and geochronology of ancient southeast Indian and southwest Pacific seafloor. J. Geophys. Res. 100, 22261–22282 (1995).

    Article  Google Scholar 

  9. 9.

    Christie, D. M., West, B. P., Pyle, D. G. & Hanan, B. B. Chaotic topography, mantle flow and mantle migration in the Australian-Antarctic discordance. Nature 394, 637–644 (1998).

    Article  Google Scholar 

  10. 10.

    Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J. G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).

    Article  Google Scholar 

  11. 11.

    Blichert-Toft, J. & White, W. M. Hf isotope geochemistry of the Galapagos Islands. Geochem. Geophys. Geosyst. 2, 2000GC000138 (2001).

    Article  Google Scholar 

  12. 12.

    Hart, S. R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753–757 (1984).

    Article  Google Scholar 

  13. 13.

    Sims, K. W. W. et al. A Sr, Nd, Hf, and Pb isotope perspective on the genesis and long-term evolution of alkaline magmas from Erebus volcano, Antarctica. J. Volcanol. Geotherm. Res. 177, 606–618 (2008).

    Article  Google Scholar 

  14. 14.

    Phillips, E. H. et al. The nature and evolution of mantle upwelling at Ross Island, Antarctica, with implications for the HIMU source. Earth Planet. Sci. Lett. 498, 38–53 (2018).

    Article  Google Scholar 

  15. 15.

    Rocholl, A., Stein, M., Molzahn, M., Hart, S. R. & Wörner, G. Geochemical evolution of rift magmas by progressive tapping of a stratified mantle source beneath the Ross Sea Rift, Northern Victoria Land, Antarctica. Earth Planet. Sci. Lett. 131, 207–224 (1995).

    Article  Google Scholar 

  16. 16.

    Rocchi, S. et al. Cenozoic magmatism in the western Ross embayment: role of mantle plume versus plate dynamics in the development of the West Antarctic Rift system. J. Geophys. Res. 107, 2195 (2002).

    Article  Google Scholar 

  17. 17.

    Nardini, I., Armienti, P., Rocchi, S., Dallai, L. & Harrison, D. Sr–Nd–Pb–He–O isotope and geochemical constraints on the genesis of Cenozoic magmas from the West Antarctic Rift. J. Petrol. 50, 1359–1375 (2009).

    Article  Google Scholar 

  18. 18.

    Aviado, K. B., Rilling-Hall, S., Bryce, J. G. & Mukasa, S. B. Submarine and subaerial lavas in the West Antarctica Rift system: temporal record of shifting magma source components from the lithosphere and asthenosphere.Geochem. Geophys. Geosyst. 16, 4344–4361 (2015).

    Article  Google Scholar 

  19. 19.

    Lanyon, R., Varne, R. & Crawford, A. J. Tasman tertiary basalts, the Balleny plume, and opening of the Tasman Sea (southwest Pacific Ocean). Geology 21, 555–558 (1993).

    Article  Google Scholar 

  20. 20.

    Kamenetsky, V. S. & Maas, R. Mantle-melt evolution (dynamic source) in the origin of a single MORB suite: a perspective from magnesian glasses of Macquarie Island. J. Petrol. 43, 1902–1922 (2002).

    Article  Google Scholar 

  21. 21.

    Hoernle, K. et al.Cenozoic intraplate volcanism on New Zealand: upwelling induced by lithospheric removal. Earth Planet. Sci. Lett. 248, 350–367 (2006).

    Article  Google Scholar 

  22. 22.

    Panter, K. S. et al. The origin of HIMU in the SW Pacific: evidence from intraplate volcanism in southern New Zealand and subantarctic islands. J. Petrol. 47, 1673–1704 (2006).

    Article  Google Scholar 

  23. 23.

    Timm, C., Hoernle, K., van den Boggard, P., Bindeman, I. & Weaver, S. Geochemical evolution of intraplate volcanism at Banks Peninsula, New Zealand: interaction between asthenispheric and lithospheric melts. J. Petrol. 50, 989–1023 (2009).

    Article  Google Scholar 

  24. 24.

    Timm, C. et al. Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia. Earth Sci. Rev. 98, 38–64 (2010).

    Article  Google Scholar 

  25. 25.

    Hart, S. R., Blusztajn, J., LeMasurier, W. E. & Rex, D. C. Hobbs coast Cenozoic volcanism: implications for the West Antarctic Rift system. Chem. Geol. 139, 223–248 (1997).

    Article  Google Scholar 

  26. 26.

    Panter, K. S., Hart, S. R., Kyle, P., Blusztajn, J. & Wilch, T. Geochemistry of Late Cenozoic basalts from the Crary Mountains: characterization of mantle sources in Marie Byrd Land, Antarctica. Chem. Geol. 165, 215–241 (2000).

    Article  Google Scholar 

  27. 27.

    Frey, F. A., Green, D. H. & Roy, S. D. Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data. J. Petrol. 19, 463–513 (1978).

    Article  Google Scholar 

  28. 28.

    O’Reilley, S. Y. & Zhang, M. Geochemical characteristics of lava-field basalts from eastern Australia and inferred sources: connections with the subcontinental lithospheric mantle? Contrib. Mineral. Petrol. 121, 148–170 (1995).

    Article  Google Scholar 

  29. 29.

    Zhang, M. & O’Reilley, S. Y. Multiple sources for basaltic rocks from Dubbo, eastern Australia: geochemical evidence for plume–lithospheric mantle interaction. Chem. Geol. 136, 33–54 (1997).

    Article  Google Scholar 

  30. 30.

    Zhang, M., O’Reilley, S. Y. & Chen, D. Location of Pacific and Indian mid-ocean ridge-type mantle in two time slices: evidence from Pb, Sr, and Nd isotopes for Cenozoic Australian basalts. Geology 27, 39–42 (1999).

    Article  Google Scholar 

  31. 31.

    McBride, J. S., Lambert, D. D., Nicholls, I. A. & Price, R. C. Osmium isotopic evidence for crust–mantle interaction in the genesis of continental intraplate basalts from the newer volcanics province, southeastern Australia. J. Petrol. 42, 1197–1218 (2001).

    Article  Google Scholar 

  32. 32.

    Hoernle, K. et al. Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic plateaus. Geochim. Cosmochim. Acta 74, 7196–7219 (2010).

    Article  Google Scholar 

  33. 33.

    Storey, B. C. et al. Mantle plumes and Antarctica–New Zealand rifting: evidence from Mid-Cretaceous mafic dykes. J. Geol. Soc. Lond. 156, 659–671 (1999).

    Article  Google Scholar 

  34. 34.

    Yamamoto, M., Phipps Morgan, J. & Morgan, W. J. in Plates, Plumes, and Planetary Processes (eds Foulger, G. R. & Jurdy, D. M.) 165–188 (Geol. Soc. Am. Spec. Paper 430, Geological Society of America, 2007).

  35. 35.

    Yamamoto, M., Phipps Morgan, J., & Morgan, W. J. in Plates, Plumes, and Planetary Processes (eds Foulger, G. R. & Jurdy, D. M.) 189–208 (Geol. Soc. Am. Spec. Paper 430, Geological Society of America, 2007).

  36. 36.

    Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).

    Article  Google Scholar 

  37. 37.

    Finn, C. A., Müller, R. D. & Panter, K. S. A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific without rift or plume origin. Geochem. Geophys. Geosyst. 6, Q02005 (2005).

    Article  Google Scholar 

  38. 38.

    Kipf, A. et al. Seamounts off the West Antarctic margin: a case for non-hotspot driven intraplate volcanism. Gondwana Res. 25, 1660–1679 (2014).

    Article  Google Scholar 

  39. 39.

    Larsen, H. C. et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nat. Geosci. 11, 782–789 (2018).

    Article  Google Scholar 

  40. 40.

    Ritsema, J., Deuss, A., van Heijst, H. J. & Woodhouse, J. H. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic travel time and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Article  Google Scholar 

  41. 41.

    French, S., Lekic, V. & Romanowicz, B. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science 342, 227–230 (2013).

    Article  Google Scholar 

  42. 42.

    Koelemeijer, P., Ritsema, J., Deuss, A. & van Heijst, H.-J. SP12RTS: a degree-12 model of shear- and compressional-wave velocity for Earth’s mantle. Geophys. J. Int. 204, 1024–1039 (2016).

    Article  Google Scholar 

  43. 43.

    Langmuir, C. H., Klein, E. M. & Plank, T. in Mantle Flow and Melt Generation Beneath Ocean Ridges (eds Morgan, J. P., Blackman, D. K. & Sinton, J. M.) 183–280 (Geophysical Monograph Series 71, American Geophysical Union, 1992).

  44. 44.

    Hansen, S. E. et al. Imaging the Antarctic mantle using adaptively parameterized P-wave tomography: evidence for heterogeneous structure beneath West Antarctica. Earth Planet. Sci. Lett. 408, 66–78 (2014).

    Article  Google Scholar 

  45. 45.

    Schilling, J.-G. et al. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29° N to 73° N. Am. J. Sci. 283, 510–586 (1983).

    Article  Google Scholar 

  46. 46.

    Langmuir, C. H. & Bender, J. F. The geochemistry of oceanic basalts in the vicinity of transform faults: observations and implications. Earth Planet. Sci. Lett. 69, 107–127 (1984).

    Article  Google Scholar 

  47. 47.

    Blichert‐Toft, J. A., Andres, A., Kingsley, M. R., Schilling, J.-G. & Albarède, F. Geochemical segmentation of the Mid‐Atlantic Ridge north of Iceland and ridge–hot spot interaction in the North Atlantic. Geochem. Geophys. Geosyst. 6, Q01E19 (2005).

    Article  Google Scholar 

  48. 48.

    Schilling, J.-G., Kingsley, R., Hanan, B. & McCully, B. Nd–Sr–Pb isotopic variations along the Gulf of Aden: evidence for the Afar mantle plume–lithosphere interaction. J. Geophys. Res. 97, 10927–10966 (1992).

    Article  Google Scholar 

  49. 49.

    Canales, J. P., Ito, G., Detrick, R. S. & Sinton, J. Crustal thickness along the western Galápagos Spreading Center and the compensation of the Galápagos hotspot swell. Earth Planet. Sci. Lett. 203, 311–327 (2002).

    Article  Google Scholar 

  50. 50.

    Schilling, J. G., Fontignie, D., Blichert-Toft, J., Kingsley, R. & Tomza, U. Pb–Hf–Nd–Sr isotope variations along the Galápagos Spreading Center (101–83° W): constraints on the dispersal of the Galápagos mantle plume. Geochem. Geophys. Geosyst. 4, 8512 (2003).

    Article  Google Scholar 

  51. 51.

    Hanan, B. B. et al. Pb and Hf isotope variations along the Southeast Indian Ridge and the dynamic distribution of MORB source domains in the upper mantle. Earth Planet. Sci. Lett. 375, 196–208 (2013).

    Article  Google Scholar 

  52. 52.

    Hamelin, C. et al. Geochemical portray of the Pacific Ridge: new isotopic data and statistical techniques. Earth Planet. Sci. Lett. 302, 154–162 (2011).

    Article  Google Scholar 

  53. 53.

    Chauvel, C., Lewin, E., Carpentier, M., Arndt, N. T. & Marini, J.-C. Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nat. Geosci. 1, 64–67 (2008).

    Article  Google Scholar 

  54. 54.

    Langmuir, C. H., Vocke, R. D. Jr, Hanson, G. N. & Hart, S. R. A general mixing equation with applications to Icelandic basalts. Earth Planet. Sci. Lett. 37, 380–392 (1978).

    Article  Google Scholar 

  55. 55.

    French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    Article  Google Scholar 

  56. 56.

    Sims, K. W. W. et al. Short length scale mantle heterogeneity beneath Iceland probed by glacial modulation of melting. Earth Planet. Sci. Lett. 379, 146–157 (2013).

    Article  Google Scholar 

  57. 57.

    Strelow, F. W. E. & Toerien, F. von S. Separation of lead(ii) from bismuth (iii), thallium (iii), cadmium(ii), mercury(ii), gold(iii), platinum(iv), palladium(ii), and other elements by anion exchange chromatography. Anal. Chem. 38, 545–548 (1966).

    Article  Google Scholar 

  58. 58.

    Thirlwall, M. Multicollector ICP-MS analysis of Pb isotopes using a 207Pb–204Pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization. Chem. Geol. 184, 255–279 (2002).

    Article  Google Scholar 

  59. 59.

    Blichert-Toft, J., Chauvel, C. & Albarede, F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib. Mineral. Petr. 127, 248–260 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by KOPRI grant nos PP13040 and PE18050 to S.-H.P. Support at Harvard, Wyoming, Woods Hole and Tulsa was provided by the National Science Foundation (OCE1259916). J.B.-T. was supported by the French Agence Nationale de la Recherche through grant no. ANR-10-BLAN-0603 (M&Ms—Mantle Melting—Measurements, Models, Mechanisms). S.-S.K. was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A02018632). J.L. was also supported by the CAS through grant no.Y4SL021001 and NSFC through grant no. 91628301. We thank the captain and crew of the icebreaker RV Aaron for support under difficult sea conditions. We appreciate the constructive reviews by J. Morgan and P. Kempton.

Author information

Affiliations

Authors

Contributions

S-H.P. led the KOPRIDGE project, which included three cruises, interpreted the data and wrote the first draft of the manuscript. C.H.L. contributed to the initial stage of cruise planning, geochemical interpretations and manuscript preparation and editing, and participated in the 2011 cruise. K.W.W.S. oversaw the isotopic analyses by S.R.S. and contributed to the geochemical interpretations and manuscript preparation and editing. J.B.-T. oversaw and participated in the Hf isotopic analyses by S.R.S. and contributed to the geochemical interpretations and manuscript preparation and editing. S.-S.K. contributed to the cruise design, performed geophysical data analyses and interpretations, and contributed to manuscript writing and editing. S.R.S. performed the Sr, Nd, Hf and Pb isotopic analyses and contributed to the table preparation, geochemical interpretations and manuscript editing. J.L. contributed to the cruise design, performed geophysical data analyses and interpretations, participated in the 2011 cruise and contributed to manuscript editing. H.C. and Y.-S.Y. contributed to the cruises and produced the relevant figures and maps. P.J.M. was involved in the cruise planning, geochemical interpretation and manuscript editing. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Sung-Hyun Park.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary data Table 1

Sr-Nd-Pb-Hf isotope data from KR1 and KR2

Supplementary data table 2

Standard and reference material data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, S., Langmuir, C.H., Sims, K.W.W. et al. An isotopically distinct Zealandia–Antarctic mantle domain in the Southern Ocean. Nat. Geosci. 12, 206–214 (2019). https://doi.org/10.1038/s41561-018-0292-4

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing