Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity

Abstract

An enduring mystery about Earth has been the age of its solid inner core. Plausible yet contrasting core thermal conductivity values lead to inner core growth initiation ages that span 2 billion years, from ~0.5 to >2.5 billion years ago. Palaeomagnetic data provide a direct probe of past core conditions, but heretofore field strength data were lacking for the youngest predicted inner core onset ages. Here we present palaeointensity data from the Ediacaran (~565 million years old) Sept-Îles intrusive suite measured on single plagioclase and clinopyroxene crystals that hosted single-domain magnetic inclusions. These data indicate a time-averaged dipole moment of ~0.7 × 1022 A m2, the lowest value yet reported for the geodynamo from extant rocks and more than ten times smaller than the strength of the present-day field. Palaeomagnetic directional studies of these crystals define two polarities with an unusually high angular dispersion (S = ~26°) at a low latitude. Together with 14 other directional data sets that suggest a hyper-reversal frequency, these extraordinary low field strengths suggest an anomalous field behaviour, consistent with predictions of geodynamo simulations, high thermal conductivities and an Ediacaran onset age of inner core growth.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Thellier–Coe palaeointensity experiments of single silicate crystals from Sept-Îles anorthosite.
Fig. 2: Geomagnetic field strength and inner core growth.

Data availability

Data presented here are available in the Earthref (MagIC) database (earthref.org/MagIC/16534).

References

  1. 1.

    Ohta, K., Kuwayama, Y., Hirose, K., Shimizu, K. & Ohishi, Y. Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature 534, 95–98 (2016).

    Article  Google Scholar 

  2. 2.

    Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N. & Goncharov, A. F. Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature 534, 99–101 (2016).

    Article  Google Scholar 

  3. 3.

    Tarduno, J. A. et al. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science 327, 1238–1240 (2010).

    Article  Google Scholar 

  4. 4.

    Tarduno, J. A., Cottrell, R. D., Davis, W. J., Nimmo, F. & Bono, R. K. A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science 349, 521–524 (2015).

    Article  Google Scholar 

  5. 5.

    O’Rourke, J. G. & Stevenson, D. J. Powering Earth’s dynamo with magnesium precipitation from the core. Nature 529, 387–389 (2016).

    Article  Google Scholar 

  6. 6.

    Badro, J., Siebert, J. & Nimmo, F. An early geodynamo driven by exsolution of mantle components from Earth’s core. Nature 536, 326–328 (2016).

    Article  Google Scholar 

  7. 7.

    Hirose, K. et al. Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature 543, 99–102 (2017).

    Article  Google Scholar 

  8. 8.

    Driscoll, P. Simulating 2 Ga of geodynamo history. Geophys. Res. Lett. 43, 5680–5687 (2016).

    Article  Google Scholar 

  9. 9.

    Biggin, A. J. et al. Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation. Nature 526, 245–248 (2015).

    Article  Google Scholar 

  10. 10.

    Smirnov, A. V., Tarduno, J. A., Kulakov, E. V., McEnroe, S. A. & Bono, R. K. Palaeointensity, core thermal conductivity and the unknown age of the inner core. Geophys. J. Int. 205, 11901195 (2016).

    Article  Google Scholar 

  11. 11.

    Driscoll, P. & Bercovici, D. On the thermal and magnetic histories of Earth and Venus: influences of melting, radioactivity, and conductivity. Phys. Earth Planet. Inter. 236, 36–51 (2014).

    Article  Google Scholar 

  12. 12.

    Labrosse, S. Thermal evolution of the core with a high thermal conductivity. Phys. Earth Planet. Inter. 247, 36–55 (2015).

    Article  Google Scholar 

  13. 13.

    Nimmo, F. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) 201–219 (Elsevier, Amsterdam, 2015).

  14. 14.

    Bono, R. K. & Tarduno, J. A. A stable Ediacaran Earth recorded by single silicate crystals of the ca. 565 Ma Sept-Îles intrusion. Geology 43, 131–134 (2015).

    Article  Google Scholar 

  15. 15.

    Tarduno, J. A., Cottrell, R. D. & Smirnov, A. V. The paleomagnetism of single silicate crystals: recording the geomagnetic field during mixed polarity intervals. Rev. Geophys. 44, RG1002 (2006).

    Article  Google Scholar 

  16. 16.

    Tarduno, J. A. Geodynamo history preserved in single silicate crystals: origins and long-term mantle control. Elements 5, 217–222 (2009).

    Article  Google Scholar 

  17. 17.

    Dunlop, D. J. & Özdemir, Ö. Rock Magnetism: Fundamentals and Frontiers (Cambridge Univ. Press, Cambridge, 1997).

  18. 18.

    Smirnov, A. V., Kulakov, E. V., Foucher, M. S. & Bristol, K. E. Intrinsic paleointensity bias and the long-term history of the geodynamo. Sci. Adv. 3, e1602306 (2017).

    Article  Google Scholar 

  19. 19.

    Tarduno, J. A., Cottrell, R. D., Watkeys, M. K. & Bauch, D. Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals. Nature 446, 657–660 (2007).

    Article  Google Scholar 

  20. 20.

    Selkin, P. A., Gee, J. S. & Tauxe, L. Nonlinear thermoremanence acquisition and implications for paleo-intensity data. Earth Planet. Sci. Lett. 256, 81–89 (2007).

    Article  Google Scholar 

  21. 21.

    Feinberg, J. M., Scott, G. R., Renne, P. R. & Wenk, H.-R. Exsolved magnetite inclusions in silicates: features determining their remanence behavior. Geology 33, 513–516 (2005).

    Article  Google Scholar 

  22. 22.

    Tarduno, J. A. & Cottrell, R. D. Dipole strength and variation of the time-averaged reversing and nonreversing geodynamo based on Thellier analyses of single plagioclase crystals. J. Geophys. Res. 110, B11101 (2005).

    Article  Google Scholar 

  23. 23.

    Shcherbakova, V. V. et al. Was the Devonian geomagnetic field dipolar or multipolar? Palaeointensity studies of Devonian igneous rocks from the Minusa Basin (Siberia) and the Kola Peninsula dykes, Russia. Geophys. J. Int. 209, 1265–1286 (2017).

    Article  Google Scholar 

  24. 24.

    Tarduno, J. A., Blackman, E. G. & Mamajek, E. E. Detecting the oldest geodynamo and attendant shielding from the solar wind: implications for habitability. Phys. Earth Planet. Inter. 233, 68–87 (2014).

    Article  Google Scholar 

  25. 25.

    Shcherbakova, V., Bakhmutov, V., Shcherbakov, V. & Zhidkov, G. Extremely low palaeointensities in the Neoproterozoic obtained on volcanic rocks from the Ukrainan shield. Geophys. Res. Abstr. 20, EGU2018-11598 (2018).

    Google Scholar 

  26. 26.

    Halls, H. C., Lovette, A., Hamilton, M. & Söderlund, U. A paleomagnetic and U–Pb geochronology study of the western end of the Grenville dyke swarm: rapid changes in paleomagnetic field direction at ca. 585 Ma related to polarity reversals? Precambrian Res. 257, 137–166 (2015).

    Article  Google Scholar 

  27. 27.

    Bazhenov, M. L. et al. Late Ediacaran magnetostratigraphy of Baltica: evidence for magnetic field hyperactivity? Earth Planet. Sci. Lett. 435, 124–135 (2016).

    Article  Google Scholar 

  28. 28.

    Aubert, J., Labrosse, S. & Poitou, C. Modelling the palaeo-evolution of the geodynamo. Geophys. J. Int. 179, 1414–1428 (2009).

    Article  Google Scholar 

  29. 29.

    Landeau, M., Aubert, J. & Olson, P. The signature of inner-core nucleation on the geodynamo. Earth Planet. Sci. Lett. 465, 193–204 (2017).

    Article  Google Scholar 

  30. 30.

    Doglioni, C., Pignatti, J. & Coleman, M. Why did life develop on the surface of the Earth in the Cambrian? Geosci. Front. 7, 865–873 (2016).

    Article  Google Scholar 

  31. 31.

    Meert, J. G., Levashova, N. M., Bazhenov, M. L. & Landing, E. Rapid changes of magnetic field polarity in the late Ediacaran: linking the Cambrian evolutionary radiation and increased UV-B radiation. Gondwana Res. 34, 149–157 (2016).

    Article  Google Scholar 

  32. 32.

    Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  Google Scholar 

  33. 33.

    O’Rourke, J. G., Korenaga, J. & Stevenson, D. J. Thermal evolution of Earth with magnesium precipitation in the core. Earth Planet. Sci. 458, 263–272 (2017).

    Article  Google Scholar 

  34. 34.

    Coe, R. S. The determination of paleo-intensities of the Earth’s magnetic field with emphasis on mechanisms which could cause non-ideal behavior in Thellier’s method. J. Geomag. Geoelectr. 19, 157–179 (1967).

    Article  Google Scholar 

  35. 35.

    Shaar, R., Tauxe, L. & Thellier, G. U. I. An integrated tool for analyzing paleointensity data from Thellier-type experiments. Geochem. Geophys. Geosys. 14, 677–692 (2013).

    Article  Google Scholar 

  36. 36.

    Coe, R. S., Grommé, S. & Mankinen, E. A. Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low. J. Geophys. Res. 83, 1740–1756 (1978).

    Article  Google Scholar 

  37. 37.

    Veitch, R. J., Hedley, I. G. & Wagner, J.-J. An investigation of the intensity of the geomagnetic field during Roman times using magnetically anisotropic bricks and tiles. Arch. Sci. 37, 359–373 (1984).

    Google Scholar 

  38. 38.

    Riisager, P. & Riisager, J. Detecting multidomain magnetic grains in Thellier palaeointensity experiments. Phys. Earth Planet. Inter. 125, 111–117 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Kloc for the sample preparation, B. L. McIntyre and R. Wiegandt for the electron microscope analyses and T. Zhou for magnetic hysteresis measurements. This work was supported by the National Science Foundation (grant nos EAR1520681 and EAR1656348 to J.A.T.).

Author information

Affiliations

Authors

Contributions

J.A.T. and R.K.B. conducted the field studies. R.K.B. conducted the palaeomagnetic measurements on the feldspars and R.D.C. measured clinopyroxenes; both data sets were analysed by R.K.B., R.D.C. and J.A.T. Electron microscope analyses were conducted by J.A.T. Core thermal conductivity models were provided by F.N. All the authors participated in the writing of the manuscript. J.A.T. conceived and supervised the study. We thank J. Feinberg for helpful comments.

Corresponding author

Correspondence to John A. Tarduno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Tables and Supplementary Figures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bono, R.K., Tarduno, J.A., Nimmo, F. et al. Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity. Nature Geosci 12, 143–147 (2019). https://doi.org/10.1038/s41561-018-0288-0

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing