Biodegradation as an important sink of aromatic hydrocarbons in the oceans

Article metrics


Atmospheric deposition of semivolatile aromatic hydrocarbons accounts for an important input of organic matter to the surface ocean. Nevertheless, the biogeochemical cycling and sinks of semivolatile aromatic hydrocarbons in the ocean remain largely uncharacterized. Here we present measurements of 64 polycyclic aromatic hydrocarbons in plankton and seawater from the Atlantic, Pacific, Indian and Southern Oceans, as well an assessment of their microbial degradation genes. Concentrations of the more hydrophobic compounds decreased when the plankton biomass was higher, consistent with the relevance of the biological pump. The mass balance for the global oceans showed that the settling fluxes of aromatic hydrocarbons in the water column were two orders of magnitude lower than the atmospheric deposition fluxes. This imbalance was high for low molecular weight hydrocarbons, such as phenanthrene and methylphenanthrenes, highly abundant in the dissolved phase. Parent polycyclic aromatic hydrocarbons were depleted to a higher degree than alkylated polycyclic aromatic hydrocarbons, and the degradation genes for polycyclic aromatic hydrocarbons were found to be ubiquitous in oceanic metagenomes. These observations point to a key role of biodegradation in depleting the bioavailable dissolved hydrocarbons and to the microbial degradation of atmospheric inputs of organic matter as a relevant process for the marine carbon cycle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Global distribution of PAHs in the oceans.
Fig. 2: PAH profiles in the oceans.
Fig. 3: Cplankton relationships with biomass (B) and the fitted slope versus KOW.
Fig. 4: Mass balance of PAHs (black) and SALCs (red) for the surface Pacific, Atlantic and Indian Oceans (0–200 m).
Fig. 5: Frequencies of PAH degradation genes in the global oceans.

Data availability

The data sets generated during and/or analysed during the current study are included in this article (and Supplementary Information), or are available from the corresponding author on reasonable request.


  1. 1.

    Zhang, Y. & Tao, S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos. Environ. 43, 812–819 (2009).

  2. 2.

    Wilcke, W. Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. Geoderma 141, 157–166 (2007).

  3. 3.

    Reddy, C. M. et al. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc. Natl Acad. Sci. USA 109, 20229–20234 (2012).

  4. 4.

    Harvey, R. G. Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity (CUP Archive, Cambridge, 1991).

  5. 5.

    Douben, P. E. PAHs: An Ecotoxicological Perspective (John Wiley & Sons, Chichester, 2003).

  6. 6.

    Hylland, K. Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems. J. Toxicol. Environ. Health A 69, 109–123 (2006).

  7. 7.

    Fernández-Pinos, M.-C. et al. Dysregulation of photosynthetic genes in oceanic Prochlorococcus populations exposed to organic pollutants. Sci. Rep. 7, 8029 (2017).

  8. 8.

    González-Gaya, B. et al. High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons. Nat. Geosci. 9, 438–442 (2016).

  9. 9.

    Farrington, J. W. & Quinn, J. G. ‘Unresolved Complex Mixture’ (UCM): a brief history of the term and moving beyond it. Mar. Pollut. Bull. 96, 29–31 (2015).

  10. 10.

    Ma, Y. et al. Deposition of polycyclic aromatic hydrocarbons in the North Pacific and the Arctic. J. Geophys. Res. Atmos. 118, 5822–5829 (2013).

  11. 11.

    Castro-Jiménez, J., Berrojalbiz, N., Wollgast, J. & Dachs, J. Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. Environ. Pollut. 166, 40–47 (2012).

  12. 12.

    Farrington, J. W. & Takada, H. Persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and plastics: examples of the status, trend, and cycling of organic chemicals of environmental concern in the ocean. Oceanography 27, 196–213 (2014).

  13. 13.

    Dachs, J., Bayona, J. M., Fowler, S. W., Miquel, J.-C. & Albaigés, J. Vertical fluxes of polycyclic aromatic hydrocarbons and organochlorine compounds in the western Alboran Sea (southwestern Mediterranean). Mar. Chem. 52, 75–86 (1996).

  14. 14.

    Deyme, R. et al. Vertical fluxes of aromatic and aliphatic hydrocarbons in the northwestern Mediterranean Sea. Environ. Pollut. 159, 3681–3691 (2011).

  15. 15.

    Halsall, C. J., Sweetman, A. J., Barrie, L. A. & Jones, K. C. Modelling the behaviour of PAHs during atmospheric transport from the UK to the Arctic. Atmos. Environ. 35, 255–267 (2001).

  16. 16.

    Nizzetto, L. et al. PAHs in air and seawater along a North–South Atlantic transect: trends, processes and possible sources. Environ. Sci. Technol. 42, 1580–1585 (2008).

  17. 17.

    Lohmann, R. et al. Organochlorine pesticides and PAHs in the surface water and atmosphere of the North Atlantic and Arctic Ocean. Environ. Sci. Technol. 43, 5633–5639 (2009).

  18. 18.

    Lohmann, R. et al. PAHs on a west-to-east transect across the tropical Atlantic Ocean. Environ. Sci. Technol. 47, 2570–2578 (2013).

  19. 19.

    Dachs, J., Bayona, J. M., Raoux, C. & Albaigés, J. Spatial, vertical distribution and budget of polycyclic aromatic hydrocarbons in the western Mediterranean seawater. Environ. Sci. Technol. 31, 682–688 (1997).

  20. 20.

    Berrojalbiz, N. et al. Biogeochemical and physical controls on concentrations of polycyclic aromatic hydrocarbons in water and plankton of the Mediterranean and Black Seas. Global Biogeochem. Cy. 25, GB4003 (2011).

  21. 21.

    Bouloubassi, I. et al. PAH transport by sinking particles in the open Mediterranean Sea: a 1 year sediment trap study. Mar. Pollut. Bull. 52, 560–571 (2006).

  22. 22.

    Adhikari, P. L., Maiti, K. & Overton, E. B. Vertical fluxes of polycyclic aromatic hydrocarbons in the northern Gulf of Mexico. Mar. Chem. 168, 60–68 (2015).

  23. 23.

    Head, I. M., Jones, D. M. & Röling, W. F. M. Marine microorganisms make a meal of oil. Nat. Rev. Microbiol. 4, 173–182 (2006).

  24. 24.

    Mallick, S., Chakraborty, J. & Dutta, T. K. Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Crit. Rev. Microbiol. 37, 64–90 (2011).

  25. 25.

    Kimes, N. E., Callaghan, A. V., Suflita, J. M. & Morris, P. J. Microbial transformation of the Deepwater Horizon oil spill—past, present, and future perspectives. Front. Microbiol. 5, 603 (2014).

  26. 26.

    Cerniglia, C. E. in Microorganisms to Combat Pollution (ed. Rosenberg, E.) 227–244 (Springer, Dordrecht, 1992).

  27. 27.

    Peng, R.-H. et al. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 32, 927–955 (2008).

  28. 28.

    Seo, J.-S., Keum, Y.-S. & Li, Q. Bacterial degradation of aromatic compounds. Int. J. Environ. Res. Public Health 6, 278–309 (2009).

  29. 29.

    Moody, J. D., Freeman, J. P., Doerge, D. R. & Cerniglia, C. E. Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol. 67, 1476–1483 (2001).

  30. 30.

    Iwai, S., Johnson, T. A., Chai, B., Hashsham, S. A. & Tiedje, J. M. Comparison of the specificities and efficacies of primers for aromatic dioxygenase gene analysis of environmental samples. Appl. Environ. Microbiol. 77, 3551–3557 (2011).

  31. 31.

    Brezna, B., Khan, A. A. & Cerniglia, C. E. Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp. FEMS Microbiol. Lett. 223, 177–183 (2003).

  32. 32.

    Kanaly, R. A. & Harayama, S. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb. Biotechnol. 3, 136–164 (2010).

  33. 33.

    Mason, O. U. et al. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J. 6, 1715–1727 (2012).

  34. 34.

    Gallego, S. et al. Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation 25, 543–556 (2014).

  35. 35.

    Dombrowski, N. et al. Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nat. Microbiol. 1, 16057 (2016).

  36. 36.

    Liu, J. et al. Rapid response of eastern Mediterranean deep sea microbial communities to oil. Sci. Rep. 7, 5762 (2017).

  37. 37.

    Rivers, A. R. et al. Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon oil spill. ISME J. 7, 2315 (2013).

  38. 38.

    Siegel, D. A. Global assessment of ocean carbon export by combining satellite observations and food-web models. Global Biogeochem. Cy. 28, 181–196 (2014).

  39. 39.

    Tsapakis, M., Apostolaki, M., Eisenreich, S. & Stephanou, E. G. Atmospheric deposition and marine sedimentation fluxes of polycyclic aromatic hydrocarbons in the eastern Mediterranean basin. Environ. Sci. Technol. 40, 4922–4927 (2006).

  40. 40.

    Galbán-Malagón, C., Berrojalbiz, N., Ojeda, M. J. & Dachs, J. The oceanic biological pump modulates the atmospheric transport of persistent organic pollutants to the Arctic. Nat. Commun. 3, 862 (2012).

  41. 41.

    Dachs, J. & Eisenreich, S. J. Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 34, 3690–3697 (2000).

  42. 42.

    Bagby, S. C., Reddy, C. M., Aeppli, C., Fisher, G. B. & Valentine, D. L. Persistence and biodegradation of oil at the ocean floor following Deepwater Horizon. Proc. Natl Acad. Sci. USA 114, E9–E18 (2017).

  43. 43.

    Radović, J. R. et al. Assessment of photochemical processes in marine oil spill fingerprinting. Mar. Pollut. Bull. 79, 268–277 (2014).

  44. 44.

    Berrojalbiz, N. et al. Accumulation and cycling of polycyclic aromatic hydrocarbons in zooplankton. Environ. Sci. Technol. 43, 2295–2301 (2009).

  45. 45.

    Mende, D. R., Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal delineation of prokaryotic species. Nat. Methods 10, 881–884 (2013).

  46. 46.

    Ferraro, D. J., Okerlund, A. L., Mowers, J. C. & Ramaswamy, S. Structural basis for regioselectivity and stereoselectivity of product formation by naphthalene 1,2-dioxygenase. J. Bacteriol. 188, 6986–6994 (2006).

  47. 47.

    Ferraro, D. J., Gakhar, L. & Ramaswamy, S. Rieske business: structure–function of Rieske non-heme oxygenases. Biochem. Biophys. Res. Commun. 338, 175–190 (2005).

  48. 48.

    Gibson, D. T. & Parales, R. E. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol. 11, 236–243 (2000).

  49. 49.

    Kauppi, B. et al. Structure of an aromatic-ring-hydroxylating dioxygenase—naphthalene 1,2-dioxygenase. Structure 6, 571–586 (1998).

  50. 50.

    Duarte, C. M., Regaudie-de-Gioux, A., Arrieta, J. M., Delgado-Huertas, A. & Agustí, S. The oligotrophic ocean is heterotrophic. Annu. Rev. Mar. Sci. 5, 551–569 (2013).

  51. 51.

    Mompeán, C. et al. The influence of nitrogen inputs on biomass and trophic structure of ocean plankton: a study using biomass and stable isotope size-spectra. J. Plankton Res. 38, 1163–1177 (2016).

  52. 52.

    Morales, L. et al. Oceanic sink and biogeochemical controls on the accumulation of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in plankton. Environ. Sci. Technol. 49, 13853–13861 (2015).

  53. 53.

    Dachs, J. et al. Oceanic biogeochemical controls on global dynamics of persistent organic pollutants. Environ. Sci. Technol. 36, 4229–4237 (2002).

  54. 54.

    Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2015).

  55. 55.

    Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).

  56. 56.

    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

  57. 57.

    Manor, O. & Borenstein, E. MUSiCC: a marker genes based framework for metagenomic normalization and accurate profiling of gene abundances in the microbiome. Genome. Biol. 16, 53 (2015).

Download references


The authors thank the support of the RV Hespérides staff and UTM technicians during the cruise and Antarctic campaign. G. Caballero and M. J. Ojeda are acknowledged for technical support during the extraction and processing of the samples. This work was funded by the Spanish Government through the Malaspina 2010 (CSD2008-00077), REMARCA (CTM2012-34673), SENTINEL (CTM2015-70535-P) and ISOMICS (CTM2015-65691-R) projects. M.V.-C. acknowledges a Leonardo award from BBVA Foundation. Predoctoral fellowships from the Spanish government (A.M.-V. and P.C.), Catalan government (E.C.-G.), Spanish Oceanography Institute (C.M.) and BBVA Foundation (B.G.-G.) are acknowledged. B.G.-G., A.M.-V., M.V.-C., P.C., E.C.-G., N.B. and J.D. belong to the “Global Change and Genomic Biogeochemistry” research group funded by the Catalan Government (2017SGR800).

Author information

B.G.-G., M.V.-C. and J.D. designed the work and wrote the manuscript. B.G.-G., P.C., B.J. and J.D. participated in the sampling campaigns. B.G.-G. and P.C. analysed the PAHs. B.G.-G., A.M.-V., M.V.-C., P.C., E.C.-G., N.B., B.J. and J.D. performed the fate assessment. A.M.-V., M.V.-C., E.C.-G. and D.L. did the bioinformatics work. C.M. and A.B. measured the carbon and nitrogen composition of the plankton samples. M.V. measured the organic carbon in the surface particulates. All the authors commented on the discussion and final version of the manuscript.

Correspondence to Jordi Dachs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Description, Supplementary Figures 1–7, Supplementary Tables 1–11

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González-Gaya, B., Martínez-Varela, A., Vila-Costa, M. et al. Biodegradation as an important sink of aromatic hydrocarbons in the oceans. Nature Geosci 12, 119–125 (2019) doi:10.1038/s41561-018-0285-3

Download citation

Further reading