Antarctic ice-sheet sensitivity to obliquity forcing enhanced through ocean connections


Deep sea geological records indicate that Antarctic ice-sheet growth and decay is strongly influenced by the Earth’s astronomical variations (known as Milankovitch cycles), and that the frequency of the glacial–interglacial cycles changes through time. Here we examine the emergence of a strong obliquity (axial tilt) control on Antarctic ice-sheet evolution during the Miocene by correlating the Antarctic margin geological records from 34 to 5 million years ago with a measure of obliquity sensitivity that compares the variance in deep sea sediment core oxygen-isotope data at obliquity timescales with variance of the calculated obliquity forcing. Our analysis reveals distinct phases of ice-sheet evolution and suggests the sensitivity to obliquity forcing increases when ice-sheet margins extend into marine environments. We propose that this occurs because obliquity-driven changes in the meridional temperature gradient affect the position and strength of the circum-Antarctic easterly flow and enhance (or reduce) ocean heat transport across the Antarctic continental margin. The influence of obliquity-driven changes in ocean dynamics is amplified when marine ice sheets are extensive, and sea ice is limited. Our reconstruction of the Antarctic ice-sheet history suggests that if sea-ice cover decreases in the coming decades, ocean-driven melting at the ice-sheet margin will be amplified.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Integrated oxygen isotope data and Antarctic geological records.
Fig. 2: Antarctic location map with Ross Sea detail.
Fig. 3: Correlation of Antarctic geological records and far-field data from the mid-Miocene.
Fig. 4: Conceptual model outlining the influence of obliquity on ice-sheet variability at glacial–interglacial frequencies as the AIS evolved over the past 34 million years under high, medium and low atmospheric CO2 conditions.

Data availability

Data sets generated during and/or analysed during the current study are available in Supplementary Tables 1 and 2 or from the corresponding author on reasonable request.


  1. 1.

    DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421, 245–249 (2003).

    Article  Google Scholar 

  2. 2.

    Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M. & DeConto, R. A 40-million-year history of atmospheric CO2. Phil. Trans. R. Soc. 371, 20130096 (2013).

    Article  Google Scholar 

  3. 3.

    Lawver, L. A. & Gahagan, L. M. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198, 11–37 (2003).

    Article  Google Scholar 

  4. 4.

    Williams, T. & Handwerger, D. A high‐resolution record of early Miocene Antarctic glacial history from ODP Site 1165, Prydz Bay. Paleoceanography 20, PA2017 (2005).

    Article  Google Scholar 

  5. 5.

    Galeotti, S. et al. Antarctic ice sheet variability across the Eocene–Oligocene boundary climate transition. Science 352, 76–80 (2016).

    Article  Google Scholar 

  6. 6.

    Naish, T. et al. Obliquity-paced Pliocene West Antarctic Ice Sheet oscillations. Nature 458, 322–328 (2009).

    Article  Google Scholar 

  7. 7.

    De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M. & Pälike, H. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y. Geology 45, 375–378 (2017).

    Article  Google Scholar 

  8. 8.

    Pälike, H. et al. The heartbeat of the Oligocene climate system. Science 314, 1894–1898 (2006).

    Article  Google Scholar 

  9. 9.

    Liebrand, D. et al. Cyclostratigraphy and eccentricity tuning of the early Oligocene through early Miocene (30.1–17.1 Ma): Cibicides mundulus stable oxygen and carbon isotope records from Walvis Ridge Site 1264. Earth Planet. Sci. Lett. 450, 392–405 (2016).

    Article  Google Scholar 

  10. 10.

    Holbourn, A., Kuhnt, W., Clemens, S., Prell, W. & Andersen, N. Middle to late Miocene stepwise climate cooling: evidence from a high-resolution deep water isotope curve spanning 8 million years. Paleoceanography 28, 688–699 (2013).

    Article  Google Scholar 

  11. 11.

    Laskar, J., Robutel, P., Gastineau, M., Correia, A. C. M. & Levrard, B. A long term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article  Google Scholar 

  12. 12.

    Kominz, M. A., Miller, K. G., Browning, J. V., Katz, M. E. & Mountain, G. S. Miocene relative sea level on the New Jersey shallow continental shelf and coastal plain derived from one-dimensional backstripping: a case for both eustasy and epeirogeny. Geosphere 12, 1437–1456 (2016).

    Article  Google Scholar 

  13. 13.

    De Santis, L., Prato, S., Brancolini, G., Lovo, M. & Torelli, L. The eastern Ross Sea continental shelf during the Cenozoic: implications for the West Antarctic Ice Sheet development. Glob. Planet. Change 23, 173–196 (1999).

    Article  Google Scholar 

  14. 14.

    Sorlien, C. C. et al. Oligocene development of the West Antarctic Ice Sheet recorded in eastern Ross Sea strata. Geology 35, 467–470 (2007).

    Article  Google Scholar 

  15. 15.

    Bart, P. J. & De Santis, L. Glacial intensification during the Neogene: a review of seismic stratigraphic evidence from the Ross Sea, Antarctica, continental shelf. Oceanography 25, 166–183 (2012).

    Article  Google Scholar 

  16. 16.

    Levy, R. et al. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene. Proc. Natl Acad. Sci. USA 113, 3453–3458 (2016).

    Article  Google Scholar 

  17. 17.

    McKay, R. et al. The stratigraphic signature of the late Cenozoic Antarctic ice sheets in the Ross Embayment. Geol. Soc. Am. Bull. 121, 1537–1561 (2009).

    Article  Google Scholar 

  18. 18.

    Anderson, J. B. et al. Progressive Cenozoic cooling and the demise of Antarctica’s last refugium. Proc. Natl Acad. Sci. USA 108, 11356–11360 (2011).

    Article  Google Scholar 

  19. 19.

    Hambrey, M. J. et al. Cenozoic glacial record of the Prydz Bay continental shelf, East Antarctica. Proc. Ocean Drilling Program, Scientific Results 119, 77–132 (1991).

    Google Scholar 

  20. 20.

    Florindo, F. et al. Magnetobiostratigraphic chronology and palaeoenvironmental history of Cenozoic sequences from ODP sites 1165 and 1166, Prydz Bay, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198, 69–100 (2003).

    Article  Google Scholar 

  21. 21.

    Scher, H. D., Bohaty, S. M., Zachos, J. C. & Delaney, M. L. Two-stepping into the icehouse: East Antarctic weathering during progressive ice-sheet expansion at the Eocene–Oligocene transition. Geology 39, 383–386 (2011).

    Article  Google Scholar 

  22. 22.

    Barrett, P. J. Textural characteristics of Cenozoic preglacial and glacial sediments at Site 270, Ross Sea, Antarctica. Initial Rep. Deep Sea Drilling Project 28, 757–766 (1975).

    Google Scholar 

  23. 23.

    Naish, T. R., Wilson, G. S., Dunbar, G. B. & Barrett, P. J. Constraining the amplitude of Late Oligocene bathymetric changes in western Ross Sea during orbitally-induced oscillations in the East Antarctic Ice Sheet: (2) implications for global sea-level changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 260, 66–76 (2008).

    Article  Google Scholar 

  24. 24.

    Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H. & Flower, B. P. Climate response to orbital forcing across the Oligocene–Miocene boundary. Science 292, 274–278 (2001).

    Article  Google Scholar 

  25. 25.

    Beddow, H. M., Liebrand, D., Sluijs, A., Wade, B. S. & Lourens, L. J. Global change across the Oligocene–Miocene transition: high-resolution stable isotope records from IODP Site U1334 (equatorial Pacific Ocean). Paleoceanography 31, 81–97 (2016).

    Article  Google Scholar 

  26. 26.

    Crampton, J. S. et al. Southern Ocean phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years. Proc. Natl Acad. Sci. USA 113, 6868–6873 (2016).

    Article  Google Scholar 

  27. 27.

    Sangiorgi, F. et al. Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene. Nat. Commun. 9, 317 (2018).

    Article  Google Scholar 

  28. 28.

    Badger, M. P. S. et al. CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet. Paleoceanography 28, 42–53 (2013).

    Article  Google Scholar 

  29. 29.

    Lewis, A. R. et al. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc. Natl Acad. Sci. USA 105, 10676–10680 (2008).

    Article  Google Scholar 

  30. 30.

    Shepherd, A., Wingham, D. & Rignot, E. Warm ocean is eroding West Antarctic Ice Sheet. Geophys. Res. Lett. 31, L23402 (2004).

    Article  Google Scholar 

  31. 31.

    Hillenbrand, C.-D. et al. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions. Nature 547, 43–48 (2017).

    Article  Google Scholar 

  32. 32.

    Golledge, N. R., Levy, R. H., McKay, R. M. & Naish, T. R. East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophys. Res. Lett. 44, 2343–2351 (2017).

    Google Scholar 

  33. 33.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article  Google Scholar 

  34. 34.

    Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).

    Article  Google Scholar 

  35. 35.

    Stewart, A. L. & Thompson, A. F. Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break. Geophys. Res. Lett. 42, 432–440 (2014).

    Article  Google Scholar 

  36. 36.

    Timmermann, A. et al. Modeling obliquity and CO2 effects on Southern Hemisphere climate during the past 408 ka. J. Clim. 27, 1863–1875 (2014).

    Article  Google Scholar 

  37. 37.

    Toggweiler, J. R. & Russell, J. Ocean circulation in a warming climate. Nature 451, 286–288 (2008).

    Article  Google Scholar 

  38. 38.

    Pfuhl, H. A. & McCave, I. N. Evidence for late Oligocene establishment of the Antarctic Circumpolar Current. Earth. Planet. Sci. Lett. 235, 715–728 (2005).

    Article  Google Scholar 

  39. 39.

    Golledge, N. R. et al. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421–425 (2015).

    Article  Google Scholar 

  40. 40.

    Thomson, D. J. Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055–1096 (1982).

    Article  Google Scholar 

  41. 41.

    Meyers, S. R., Sageman, B. B. & Arthur, M. A. Obliquity forcing of organic matter accumulation during Oceanic Anoxic Event 2. Paleoceanography 27, PA3212 (2012).

    Google Scholar 

  42. 42.

    Drury, A. J. et al. Deciphering the state of the late Miocene to early Pliocene equatorial Pacific. Paleoceanogr. Paleoclimatol. 33, 246–263 (2018).

    Article  Google Scholar 

  43. 43.

    Holbourn, A. E. et al. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nat. Commun. 9, 1584 (2018).

    Article  Google Scholar 

  44. 44.

    Holbourn, A. et al. Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology 42, 19–22 (2014).

    Article  Google Scholar 

  45. 45.

    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  46. 46.

    Meyers, S. R. Astrochron: an R package for Astrochronology (R Project for Statistical Computing, 2014).

  47. 47.

    Savage, M. L. & Ciesielski, P. F. in Antarctic Earth Science (eds Oliver, R. L., James, P. R. & Jago, J. B.) 555–559 (Australian Academy of Science, Canberra, 1983).

  48. 48.

    Florindo, F. et al. Paleomagnetism and biostratigraphy of sediments from Southern Ocean ODP Site 744 (southern Kerguelen Plateau): implications for early-to-middle Miocene climate in Antarctica. Glob. Planet. Change 110, 434–454 (2013).

    Article  Google Scholar 

  49. 49.

    Gradstein, F. M. et al. in The Geologic Time Scale (eds Gradstein, F. M., Ogg, J. G, Schmitz, D. & Ogg, M.) ix–xi (Elsevier, Amsterdam, 2012).

  50. 50.

    Raup, D. M. Mathematical models of cladogenesis. Paleobiology 11, 42–52 (1985).

    Article  Google Scholar 

Download references


This study was supported by the New Zealand Ministry of Business Innovation and Employment contract C05X1001 (R.H.L., T.R.N., N.R.G. and R.M.M.) and by NSF grant EAR-1151438 (S.R.M.). A sabbatical leave from the University of Wisconsin—Madison supported S.R.M to conduct research at the Institute of Geological and Nuclear Science.

Author information




R.H.L. and S.R.M. conceived the project. R.H.L., T.R.N. and R.M.M. performed the stratigraphic and proxy synthesis, and S.R.M. conducted the time series analyses. R.H.L. and S.R.M. wrote the first draft of the manuscript, in consultation with T.R.N., N.R.G., J.S.C. and R.M.M. All the authors contributed to the interpretations and major findings of this work.

Corresponding author

Correspondence to R. H. Levy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Tables

Supplementary Data

Supplementary Data 1

Supplementary Data

Supplementary Data 2

Supplementary Data

R Script

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Levy, R.H., Meyers, S.R., Naish, T.R. et al. Antarctic ice-sheet sensitivity to obliquity forcing enhanced through ocean connections. Nature Geosci 12, 132–137 (2019).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing