Endorheic (hydrologically landlocked) basins spatially concur with arid/semi-arid climates. Given limited precipitation but high potential evaporation, their water storage is vulnerable to subtle flux perturbations, which are exacerbated by global warming and human activities. Increasing regional evidence suggests a probably recent net decline in endorheic water storage, but this remains unquantified at a global scale. By integrating satellite observations and hydrological modelling, we reveal that during 2002–2016 the global endorheic system experienced a widespread water loss of about 106.3 Gt yr−1, attributed to comparable losses in surface water, soil moisture and groundwater. This decadal decline, disparate from water storage fluctuations in exorheic basins, appears less sensitive to El Niño–Southern Oscillation-driven climate variability, which implies a possible response to longer-term climate conditions and human water management. In the mass-conserved hydrosphere, such an endorheic water loss not only exacerbates local water stress, but also imposes excess water on exorheic basins, leading to a potential sea level rise that matches the contribution of nearly half of the land glacier retreat (excluding Greenland and Antarctica). Given these dual ramifications, we suggest the necessity for long-term monitoring of water storage variation in the global endorheic system and the inclusion of its net contribution to future sea level budgeting.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

Calculated water storage changes in global endorheic regions are distributed through PANGAEA (https://doi.org/10.1594/PANGAEA.895895). Storage changes in major lakes and reservoirs are available upon reasonable request to the corresponding author. Glacier mass change data are available through Nature Geoscience article https://doi.org/10.1038/NGEO2999.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Wada, Y. et al. Global monthly water stress: 2. Water demand and severity of water stress. Water Resour. Res. 47, W07518 (2011).

  2. 2.

    Hammer, U. T. Saline Lake Ecosystems of the World (Dr W. Junk, Dordrecht, 1986).

  3. 3.

    Dai, A. G. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

  4. 4.

    Reager, J. T. et al. A decade of sea level rise slowed by climate-driven hydrology. Science 351, 699–703 (2016).

  5. 5.

    Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

  6. 6.

    Wada, Y., van Beek, L. P. H., Wanders, N. & Bierkens, M. F. P. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 8, 034036 (2013).

  7. 7.

    Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217–5238 (2015).

  8. 8.

    Wurtsbaugh, W. A. et al. Decline of the world’s saline lakes. Nat. Geosci. 10, 816–821 (2017).

  9. 9.

    Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

  10. 10.

    Jacob, T., Wahr, J., Pfeffer, W. T. & Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012).

  11. 11.

    Brun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10, 668–673 (2017).

  12. 12.

    Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

  13. 13.

    Church, J. A. & White, N. J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32, 585–602 (2011).

  14. 14.

    Cazenave, A. et al. The rate of sea-level rise. Nat. Clim. Change 4, 358–361 (2014).

  15. 15.

    Dieng, H. B., Cazenave, A., Meyssignac, B. & Ablain, M. New estimate of the current rate of sea level rise from a sea level budget approach. Geophys. Res. Lett. 44, 3744–3751 (2017).

  16. 16.

    AVISO Mean Sea Level Product and Image Interactive Selection (Centre National d’études Spatiales); https://www.aviso.altimetry.fr/en/data/products/ocean-indicators-products/mean-sea-level/products-images.html (accessed 10 April 2018).

  17. 17.

    Sahagian, D. L., Schwartz, F. W. & Jacobs, D. K. Direct anthropogenic contributions to sea-level rise in the 20th century. Nature 367, 54–57 (1994).

  18. 18.

    Vörösmarty, C. J. & Sahagian, D. Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50, 753–765 (2000).

  19. 19.

    Milly, P. C. D. et al. in Understanding Sea-Level Rise and Variability (eds Church J. A. et al.) 226–255 (Wiley-Blackwell, Chichester, 2010).

  20. 20.

    Pokhrel, Y. N. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5, 389–392 (2012).

  21. 21.

    Wada, Y. et al. Recent changes in land water storage and its contribution to sea level variations. Surv. Geophys. 38, 131–152 (2017).

  22. 22.

    Beni, A. N. et al. Caspian sea-level changes during the last millennium: historical and geological evidence from the south Caspian Sea. Clim. Past 9, 1645–1665 (2013).

  23. 23.

    Sahagian, D. Global physical effects of anthropogenic hydrological alterations: sea level and water redistribution. Global Planet. Change 25, 39–48 (2000).

  24. 24.

    Famiglietti, J. S. Remote sensing of terrestrial water storage, soil moisture and surface waters. Geophys. Monogr. Ser. 19, 197–207 (2004).

  25. 25.

    Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004).

  26. 26.

    Rowlands, D. D. et al. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys. Res. Lett. 32, L04310 (2005).

  27. 27.

    Watkins, M. M., Wiese, D. N., Yuan, D. N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).

  28. 28.

    Wada, Y. et al. Fate of water pumped from underground and contributions to sea-level rise. Nat. Clim. Change 6, 777–780 (2016).

  29. 29.

    Zhang, G. Q. et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basins. Geophys. Res. Lett. 44, 5550–5560 (2017).

  30. 30.

    Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

  31. 31.

    Zou, Z. et al. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl Acad. Sci. USA 115, 3810–3815 (2018).

  32. 32.

    Yao, F. et al. Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium. Environ. Res. Lett. 13, 064011 (2018).

  33. 33.

    van Dijk, A. I. J. M. et al. The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49, 1040–1057 (2013).

  34. 34.

    Fasullo, J. T., Boening, C., Landerer, F. W. & Nerem, R. S. Australia’s unique influence on global sea level in 2010–2011. Geophys. Res. Lett. 40, 4368–4373 (2013).

  35. 35.

    Ozyavas, A., Khan, S. D. & Casey, J. F. A possible connection of Caspian Sea level fluctuations with meteorological factors and seismicity. Earth Planet. Sci. Lett. 299, 150–158 (2010).

  36. 36.

    Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).

  37. 37.

    Song, C. Q., Huang, B., Richards, K., Ke, L. H. & Phan, V. H. Accelerated lake expansion on the Tibetan Plateau in the 2000s: induced by glacial melting or other processes? Water Resour. Res. 50, 3170–3186 (2014).

  38. 38.

    Walvoord, M. A., Phillips, F. M., Tyler, S. W. & Hartsough, P. C. Deep arid system hydrodynamics—2. Application to paleohydrologic reconstruction using vadose zone profiles from the northern Mojave Desert. Water Resour. Res. 38, 1291 (2002).

  39. 39.

    Barnum, D. A., Bradley, T., Cohen, M., Wilcox, B. & Yanega, G. State of the Salton Sea: A Science and Monitoring Meeting of Scientists for the Salton Sea Open-file report 2017-1005 (US Department of the Interior and US Geological Survey, 2017).

  40. 40.

    Revollo, M. M. Management issues in the Lake Titicaca and Lake Poopo system: importance of developing a water budget. Lakes Reserv. Res. Manag. 6, 225–229 (2001).

  41. 41.

    Calizaya, A., Meixner, O., Bengtsson, L. & Berndtsson, R. Multi-criteria decision analysis (MCDA) for integrated water resources management (IWRM) in the Lake Poopo Basin, Bolivia. Water Res. Manag. 24, 2267–2289 (2010).

  42. 42.

    Dai, A., Qian, T. T., Trenberth, K. E. & Milliman, J. D. Changes in continental freshwater discharge from 1948 to 2004. J. Climate 22, 2773–2792 (2009).

  43. 43.

    Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability. Hydrol. Earth Syst. Sci. 15, 3785–3808 (2011).

  44. 44.

    Chen, J. L. et al. Long-term Caspian Sea level change. Geophys. Res. Lett. 44, 6993–7001 (2017).

  45. 45.

    Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dynam. 43, 2607–2627 (2014).

  46. 46.

    Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl Acad. Sci. USA 111, 3251–3256 (2014).

  47. 47.

    Prudhomme, C. et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl Acad. Sci. USA 111, 3262–3267 (2014).

  48. 48.

    Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

  49. 49.

    Wolter, K. & Timlin, M. S. Monitoring ENSO in COADS with a seasonally adjusted principal component index. In Proceedings of the 17th Climate Diagnostics Workshop, Norman, OK 52–57 (NOAA/NMC/CAC, NSSL, Oklahoma Climate Survey, CIMMS and the School of Meteorology, Univ. of Oklahoma, 1993).

  50. 50.

    Wolter, K. & Timlin, M. S. Measuring the strength of ENSO events – how does 1997/98 rank? Weather 53, 315–324 (1998).

  51. 51.

    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos Trans. Am. Geophys. Union 89, 93–94 (2008).

  52. 52.

    Masutomi, Y., Inui, Y., Takahashi, K. & Matsuoka, Y. Development of highly accurate global polygonal drainage basin data. Hydrol. Processes 23, 572–584 (2009).

  53. 53.

    Wiese, D. N. JPL GRACE Mascon Ocean, Ice, and Hydrology Equivalent Water Height JPL RL05M.1 https://doi.org/10.5067/TEMSC-OCL05 (Physical Oceanography Distributed Active Archive Center, 2015).

  54. 54.

    Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 52, 7490–7502 (2016).

  55. 55.

    Wang, J., Sheng, Y. & Wada, Y. Little impact of the Three Gorges Dam on recent decadal lake decline across China’s Yangtze Plain. Water Resour. Res. 53, 3854–3877 (2017).

  56. 56.

    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).

  57. 57.

    Sheng, Y. et al. Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery. Remote Sens. Environ. 185, 129–141 (2016).

  58. 58.

    Schwatke, C., Dettmering, D., Bosch, W. & Seitz, F. DAHITI—an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 19, 4345–4364 (2015).

  59. 59.

    Crétaux, J. F. et al. SOLS: a lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv. Space Res. 47, 1497–1507 (2011).

  60. 60.

    Wang, J., Sheng, Y. & Tong, T. S. D. Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam. Remote Sens. Environ. 152, 251–269 (2014).

  61. 61.

    RGI Consortium. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6.0: Technical Report https://doi.org/10.7265/N5-RGI-60 (Global Land Ice Measurements from Space, Boulder, 2017).

  62. 62.

    Gardelle, J., Berthier, E., Arnaud, Y. & Kääb, A. Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere 7, 1263–1286 (2013).

  63. 63.

    Neckel, N., Loibl, D. & Rankl, M. Recent slowdown and thinning of debris-covered glaciers in south-eastern Tibet. Earth Planet. Sci. Lett. 464, 95–102 (2017).

  64. 64.

    Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

  65. 65.

    Tadono, T. et al. Precise global DEM generation by ALOS PRISM. ISPRS Annals Photogram. Remote Sens. Spatial Inf. Sci. II-4, 71–76 (2014).

  66. 66.

    Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 7, 877–887 (2013).

  67. 67.

    Falaschi, D. et al. Mass changes of alpine glaciers at the eastern margin of the Northern and Southern Patagonian Icefields between 2000 and 2012. J. Glaciol. 63, 258–272 (2017).

  68. 68.

    Mernild, S. H., Liston, G. E., Hiemstra, C. & Wilson, R. The Andes Cordillera. Part III: glacier surface mass balance and contribution to sea level rise (1979–2014). Int. J. Climatol. 37, 3154–3174 (2017).

  69. 69.

    Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, E1080–E1089 (2018).

  70. 70.

    Long, D. et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 192, 198–216 (2017).

  71. 71.

    Döll, P., Kaspar, F. & Lehner, B. A global hydrological model for deriving water availability indicators: model tuning and validation. J. Hydrol. 270, 105–134 (2003).

  72. 72.

    Müller Schmied, H. et al. Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol. Earth Syst. Sci. 18, 3511–3538 (2014).

  73. 73.

    Wada, Y. & Bierkens, M. F. P. Sustainability of global water use: past reconstruction and future projections. Environ. Res. Lett. 9, 104003 (2014).

  74. 74.

    Rodell, M. et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

  75. 75.

    Khandu, Forootan, E., Schumacher, M., Awange, J. L. & Müller Schmied, H. Exploring the influence of precipitation extremes and human water use on total water storage (TWS) changes in the Ganges–Brahmaputra–Meghna River Basin. Water Resour. Res. 52, 2240–2258 (2016).

  76. 76.

    Tangdamrongsub, N. et al. Evaluation of groundwater storage variations estimated from GRACE data assimilation and state-of-the-art land surface models in Australia and the North China Plain. Remote Sens. 10, 483 (2018).

  77. 77.

    Margulis, S. A., Cortes, G., Girotto, M. & Durand, M. A Landsat-Era Sierra Nevada Snow Reanalysis (1985-2015). J. Hydrometeorol. 17, 1203–1221 (2016).

  78. 78.

    Wrzesien, M. L. et al. Comparison of methods to estimate snow water equivalent at the mountain range scale: a case study of the California Sierra Nevada. J. Hydrometeorol. 18, 1101–1119 (2017).

  79. 79.

    Snow Data Assimilation System (SNODAS) Data Products at NSIDC, Version 1 https://doi.org/10.7265/N5TB14TC (National Snow and Ice Data Center, Boulder, 2004; accessed 19 March 2018).

  80. 80.

    Sheffield, J., Wood, E. F. & Roderick, M. L. Little change in global drought over the past 60 years. Nature 491, 435–438 (2012).

  81. 81.

    Xie, P. P. & Arkin, P. A. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 78, 2539–2558 (1997).

  82. 82.

    Schneider, U. et al. GPCC Full Data Reanalysis Version 6.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historic Data https://doi.org/10.5676/DWD_GPCC/FD_M_V7_050 (NOAA Earth System Research Laboratory Physical Sciences Division, 2011; accessed 24 August 2016).

  83. 83.

    Adler, R. F. et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).

  84. 84.

    Chen, M. Y., Xie, P. P., Janowiak, J. E. & Arkin, P. A. Global land precipitation: a 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266 (2002).

  85. 85.

    You, Q. L., Min, J. Z., Zhang, W., Pepin, N. & Kang, S. C. Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Clim. Dynam. 45, 791–806 (2015).

  86. 86.

    New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Climate Res. 21, 1–25 (2002).

  87. 87.

    Wu, J. & Gao, X. J. A gridded daily observation dataset over China region and comparison with the other datasets. Chinese J. Geophys. 56, 1102–1111 (2013).

  88. 88.

    Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

  89. 89.

    Vose, R. S. et al. NOAA’s merged land–ocean surface temperature analysis. Bull. Am. Meteorol. Soc. 93, 1677–1685 (2012).

  90. 90.

    Rohde, R. et al. A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinfor. Geostat. Overview 1, https://doi.org/10.4172/2327-4581.1000101 (2013).

Download references


This research was supported by Kansas State University faculty start-up fund to J.W., NASA Surface Water and Ocean Topography (SWOT) Grant (no. NNX16AH85G) to Y.S. and China’s Thousand Young Talents Program (no. Y7QR011001) to C.S. This work was funded in part by the NASA Sea Level Change team. A portion of this research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Assistance for the endorheic basin aggregation and lake mapping was provided by M. Ding, T. Urano and C. Bailey (Kansas State University). We thank E. Berthier (OMP/LEGOS) for support in providing glacier mass change data and comments on the manuscript, and L. Ke, H. Pan and S. Zhan (UCLA) for helping collect meteorological and altimetry data. Constructive suggestions were provided by K. Yang (University of Colorado Boulder) on the SWE validation, Q. Cao (UCLA) on the soil moisture validation, M. Ménégoz (Barcelona Supercomputing Center) on climate variability and J. M. McAlister (Oklahoma State University) on scientific implications and writing.

Author information

Author notes

  1. These authors contributed equally: Jida Wang and Chunqiao Song.


  1. Department of Geography, Kansas State University, Manhattan, KS, USA

    • Jida Wang
    • , Fangfang Yao
    •  & Richard A. Marston
  2. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China

    • Chunqiao Song
  3. Department of Geography, University of California, Los Angeles, CA, USA

    • Chunqiao Song
    • , Yongwei Sheng
    •  & Glen M. MacDonald
  4. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

    • John T. Reager
    •  & James S. Famiglietti
  5. Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

    • James S. Famiglietti
  6. Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA

    • Glen M. MacDonald
  7. University of Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, F-38000, Grenoble, France

    • Fanny Brun
  8. LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, F-31400, Toulouse, France

    • Fanny Brun
  9. Institute of Physical Geography, Goethe University Frankfurt, Frankfurt am Main, Germany

    • Hannes Müller Schmied
  10. Senckenberg Biodiversity and Climate Research Center (SBiK-F), Frankfurt am Main, Germany

    • Hannes Müller Schmied
  11. International Institute for Applied Systems Analysis, Laxenburg, Austria

    • Yoshihide Wada


  1. Search for Jida Wang in:

  2. Search for Chunqiao Song in:

  3. Search for John T. Reager in:

  4. Search for Fangfang Yao in:

  5. Search for James S. Famiglietti in:

  6. Search for Yongwei Sheng in:

  7. Search for Glen M. MacDonald in:

  8. Search for Fanny Brun in:

  9. Search for Hannes Müller Schmied in:

  10. Search for Richard A. Marston in:

  11. Search for Yoshihide Wada in:


J.W. and C.S. conceived the presented study and performed the analysis. Y.S. initiated the separation of endorheic and exorheic basins. F.B. contributed to data analysis of glacier mass changes. Y.W. and H.M.S. provided model simulations and contributed to water balance analyses. F.Y. participated in model validations and lake storage analysis. J.W., J.T.R. and C.S. developed and conducted the assessment of mascon rescaling uncertainties, with constructive feedback from Y.W. and F.Y. Y.W., G.M.M., J.S.F., H.M.S. and R.A.M. provided critical insights on method design and result interpretation. J.W. wrote the initial draft of the paper, with substantial contributions from all authors.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Jida Wang.

Supplementary information

  1. Supplementary Information

    Supplementary Figures and Tables.

About this article

Publication history