Review Article | Published:

Anthropogenic stresses on the world’s big rivers

Nature Geosciencevolume 12pages721 (2019) | Download Citation

Abstract

The world’s big rivers and their floodplains were central to development of civilization and are now home to c. 2.7 billion people. They are economically vital whilst also constituting some of the most diverse habitats on Earth. However, a number of anthropogenic stressors, including large-scale damming, hydrological change, pollution, introduction of non-native species and sediment mining, challenge their integrity and future, as never before. The rapidity and extent of such change is so great that large-scale, and potentially irreparable, transformations may ensue in periods of years to decades, with ecosystem collapse being possible in some big rivers. Prioritizing the fate of the world’s great river corridors on an international political stage is imperative. Future sustainable management, and establishment of environmental flow requirements for the world’s big rivers, must be supported through co-ordinated international funding, and trans-continental political agreement to monitor these rivers, finance their continual upkeep and help ameliorate increasing anthropogenic pressures. To have any effect, all of these must be set within an inclusive governance framework across scales, organizations and local populace.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Data and data sources for some of the data discussed in this paper are given in Supplementary Table 1.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 08 January 2019

    In the version of this Review originally published, the author name ‘Arthington’ was misspelt in refs 216 and 218. Further, in the sentence that starts “Global warming has also been linked to potentially significant increases in the flow of Russia’s three great Artic rivers...”, ‘Artic’ should have been ‘Arctic’. These errors have now been corrected.

References

  1. 1.

    Bianchi, T. S. Deltas and Humans (Oxford Univ. Press, New York, 2016).

  2. 2.

    Singh, A. et al. Counter-intuitive influence of Himalayan river morphodynamics on Indus Civilisation urban settlements. Nat. Commun. 8, 1617 (2017).

  3. 3.

    Macklin, M. G. & Lewin, J. The rivers of civilization. Quat. Sci. Rev. 114, 228–244 (2015).

  4. 4.

    Hasan, F. A. The dynamics of a riverine civilisation: a geoarchaeological perspective on the Nile Valley, Egypt. World Archaeology 29, 51–74 (1997).

  5. 5.

    Doyle, M. The Source: How Rivers Made America and America Remade its Rivers (W. W. Norton, New York, 2018).

  6. 6.

    Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).

  7. 7.

    Gore, J. A. & Shields Jr, F. D. Can large rivers be restored? BioScience 45, 142–152 (1995).

  8. 8.

    Abell, R., Lehner, B., Thieme, M. & Linke, S. Looking beyond the fenceline: assessing protection gaps for the world’s rivers. Conserv. Lett. 10, 384–394 (2017).

  9. 9.

    Transboundary River Basins: Status and Trends (UNEP-DHI, UNEP, TWAP, 2016); http://geftwap.org/publications/river-basins-technical-report

  10. 10.

    Bakker, M. H. N. Transboundary river floods: examining countries, international river basins and continents. Water Policy 11, 269–288 (2009).

  11. 11.

    Sadoff, C. W. & Grey, D. Beyond the river: the benefits of cooperation on international rivers. Water Policy 4, 389–403 (2002).

  12. 12.

    Uitto, J. I. & Duda, A. M. Management of transboundary water resources: lessons from international cooperation for conflict prevention. Geogr. J. 168, 365–378 (2002).

  13. 13.

    Chellaney, B. Coming water wars. The Intl Economy http://www.international-economy.com/TIE_F09_Chellaney.pdf (2009).

  14. 14.

    Dinar, S., Katz, D., De Stefano, L. & Blankespoor, B. Climate change, conflict, and cooperation: global analysis of the effectiveness of international river treaties in addressing water variability. Political Geogr. 45, 55–66 (2015).

  15. 15.

    Link, P. M., Scheffran, J. & Ide, T. Conflict and cooperation in the water-security nexus: a global comparative analysis of river basins under climate change. WIREs Water 3, 495–515 (2016).

  16. 16.

    Petersen-Perlman, J. D., Veilleux, J. C. & Wolf, A. T. International water conflict and cooperation: challenges and opportunities. Wat. Int. 42, 105–120 (2017).

  17. 17.

    De Stefano, L., Petersen-Perlman, J. D., Sproles, E. A., Eynard, J. & Wolf, A. T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Change 45, 35–46 (2017).

  18. 18.

    Gernaat, D. E. H. J., Bogaart, P. W., van Vuuren, D. P., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy 2, 821–828 (2017).

  19. 19.

    Hogeboom, R. J., Knook, L. & Hoekstra, A. Y. The blue water footprint of the world’s artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection and recreation. Adv. Wat. Resources 113, 285–294 (2018).

  20. 20.

    Jackson, R. B. et al. Water in a changing world. Ecol. Appl. 11, 1027–1045 (2001).

  21. 21.

    Palmer, M. A. et al. Climate change and the world’s river basins: anticipating management options. Front. Ecol. Environ. 6, 81–89 (2008).

  22. 22.

    Fuller, M. R., Doyle, M. W. & Strayer, D. L. Causes and consequences of habitat fragmentation in river networks. Ann. NY Acad. Sci. 1355, 31–51 (2015).

  23. 23.

    Veilleux, J. C. & Anderson, E. P. 2015 snapshot of water security in the Nile, Mekong and Amazon river basins. Limnol. Oceanogr. Bull. 25, 8–14 (2016).

  24. 24.

    Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

  25. 25.

    Potter, P. E & Hamblin, W. K. Big Rivers Worldwide (Brigham Young University Geology Studies, Provo, 2005).

  26. 26.

    Gupta, A. Large Rivers: Geomorphology and Management (Wiley and Sons, Chichester, 2007).

  27. 27.

    Ashworth, P. J. & Lewin, J. How do big rivers come to be different? Earth Sci. Rev. 114, 84–107 (2012).

  28. 28.

    Latrubesse, E. M. Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers. Geomorphology 101, 130–145 (2008).

  29. 29.

    Lewin, J. & Ashworth, P. J. Defining large river channel patterns: alluvial exchange and plurality. Geomorphology 215, 83–98 (2014).

  30. 30.

    Alqahtani, F. A., Johnson, H. D., Jackson, C. A.-L. & Som, M. R. B. Nature, origin and evolution of a Late Pleistocene incised valley-fill, Sunda Shelf, Southeast Asia. Sedimentology 62, 1198–1232 (2015).

  31. 31.

    Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931 (2010).

  32. 32.

    Junk, W. J., Soares, M. G. M. & Bayley, P. B. Freshwater fishes of the Amazon River basin: their biodiversity, fisheries, and habitats. Aquat. Ecosyst. Health Manag. 10, 153–173 (2007).

  33. 33.

    Benone, N. L., Esposito, M. C., Juen, L., Pompeu, P. S. & Montag, L. F. A. Regional controls on physical habitat structure of Amazon streams. River Res. Appl. 33, 766–776 (2017).

  34. 34.

    Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).

  35. 35.

    Sarker, M. H. & Thorne, C. R. in Braided Rivers: Process, Deposits, Ecology and Management (eds Sambrook Smith, G. H. et al.) 289–310 (Blackwell, Oxford, 2006).

  36. 36.

    Gross, M. A global megadam mania. Curr. Biol. 26, R779–R782 (2016).

  37. 37.

    Magilligan, F. J., Snedden, C. S. & Fox, C. A. in The Politics of Fresh Water: Access, Conflict and Identity (eds Ashcraft, C. M. & Mayer, T.) 78–97 (Routledge, London, 2017).

  38. 38.

    Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–171 (2015).

  39. 39.

    Hennig, T. & Magee, D. Comment on ‘An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales’. Environ. Res. Lett. 12, 038001 (2017).

  40. 40.

    Hennig, T. Damming the transnational Ayeyarwady basin. Hydropower and the water-energy nexus. Renew. Sustain. Energy Rev. 65, 1232–1246 (2016).

  41. 41.

    Vörösmarty, C. et al. Anthropogenic sediment retention: major global impact from registered river impoundments. Glob. Planet. Change 39, 169–190 (2003).

  42. 42.

    Kareiva, P. M. Dam choice: analyses for multiple needs. Proc. Natl Acad. Sci. USA 109, 5553–5554 (2012).

  43. 43.

    Veldkamp, T. I. E. et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 8, 15697 (2017).

  44. 44.

    Benchimol, M. & Peres, C. A. Widespread forest vertebrate extinctions induced by a mega hydroelectric dam in lowland Amazonia. PLoS ONE 10, e0129818 (2015).

  45. 45.

    Almeida, R. M., Barros, N., Cole, J. J., Tranvik, L. & Roland, F. Emissions from Amazonian dams. Nat. Clim. Change 3, 1005 (2013).

  46. 46.

    Fearnside, P. Emissions from tropical hydropower and the IPCC. Environ. Sci. Policy 50, 225–239 (2015).

  47. 47.

    Räsänen, T. A., Varis, O., Scherer, L. & Kummu, M. Greenhouse gas emissions of hydropower in the Mekong River basin. Environ. Res. Lett. 13, 034030 (2018).

  48. 48.

    Chen, Y., Syvitski, J. P. M., Gao, S., Overeem, I. & Kettner, A. J. Socio-economic impacts on flooding: a 4000-year history of the Yellow River, China. Ambio 41, 682–698 (2012).

  49. 49.

    Chen, Y., Overeem, I., Kettner, A. J., Gao, S. & Syvitski, J. P. M. Modeling flood dynamics along the superelevated channel belt of the Yellow River over the last 3000 years. J. Geophys. Res. Earth Surf. 120, 1321–1351 (2015).

  50. 50.

    Chen, Y. et al. Balancing green and grain trade. Nat. Geosci. 8, 739–741 (2015).

  51. 51.

    Walling, D. E. The changing sediment load of the world’s rivers and implications for land-ocean sediment fluxes. In Proc. Int. Hydraulic Engineering Symposium Aachen (IWASA) (Aachen, Denmark, 2015); http://www.iww.rwth-aachen.de/index.php?lang=en&cat=symposium&sec=previous_iwasa&sub=iwasa2015&page=iwasa2015

  52. 52.

    Zhao, G. et al. Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau, China. Catena 148, 126–137 (2017).

  53. 53.

    Kong, D. et al. Environmental impact assessments of the Xiaolangdi Reservoir on the most hyperconcentrated river, Yellow River, China. Environ. Sci. Pollut. Res. 24, 4337–4352 (2017).

  54. 54.

    Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2016).

  55. 55.

    Li, Y., Chang, J., Tu, H. & Wang, X. Impact of the Sanmenxia and Xiaolangdi reservoirs operation on the hydrologic regime of the Lower Yellow River. J. Hydrologic Eng. 21, 06015015 (2016).

  56. 56.

    Bi, N., Wang, H. & Yang, Z. Recent changes in the erosion-accretion patterns of the active Huanghe (Yellow River) delta lobe caused by human activities. Cont. Shelf Res. 90, 70–78 (2014).

  57. 57.

    Wu, X. et al. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976–2013): dominant roles of riverine discharge and sediment grain size. Geomorphology 292, 115–127 (2017).

  58. 58.

    Li, X., Chen, H., Jiang, X., Yu, Z. & Yao, Q. Impacts of human activities on nutrient transport in the Yellow River: the role of the Water-Sediment Regulation Scheme. Sci. Total Environ. 592, 161–170 (2017).

  59. 59.

    Swinkels, L. H. et al. Suspended sediment causes annual acute fish mortality in the Pilcomayo River (Bolivia). Hydrol. Process. 28, 8–15 (2014).

  60. 60.

    Baoligao, B., Xu, F., Chen, X., Wang, X. & Chen, W. Acute impacts of reservoir flushing on fishes in the Yellow River. J. Hydro-Environ. Res. 13, 26–35 (2016).

  61. 61.

    Ansar, A., Flyvbjerg, B., Budzier, A. & Lunn, D. Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 69, 43–56 (2014).

  62. 62.

    Awojobi, O. & Jenkins, G. P. Were the hydro dams financed by the World Bank from 1976 to 2005 worthwhile? Energy Policy 86, 222–232 (2015).

  63. 63.

    Mei, X. et al. Modulation of extreme flood levels by impoundment significantly offset by floodplain loss downstream of the Three Gorges Dam. Geophys. Res. Lett. 45, 3147–3155 (2018).

  64. 64.

    Fearnside, P. M. Tropical dams: to build or not to build? Science 351, 456–457 (2016).

  65. 65.

    Fearnside, P. M. Belo Monte: actors and arguments in the struggle over Brazil’s most controversial Amazonian dam. Die Erde J. Geographical Soc. Berlin 148, 14–26 (2017).

  66. 66.

    Skinner, J. & Haas, L. Watered Down? A Review of Social and Environmental Safeguards for Large Dam Projects Natural Resource Issues No. 28. (International Institute for Environment and Development, London, 2014).

  67. 67.

    Siciliano, G., Urban, F., Kim, S. & Lonn, P. D. Hydropower, social priorities and the rural-urban development divide: the case of large dams in Cambodia. Energy Policy 86, 273–285 (2015).

  68. 68.

    Anderson, E. P. & Veilleux, J. C. Cultural costs of tropical dams. Science 352, 159 (2016).

  69. 69.

    Bellmore, J. R. et al. Status and trends of dam removal research in the United States. WIREs Water 4, e1164 (2017).

  70. 70.

    Hart, D. D. et al. Dam removal: challenges and opportunities for ecological research and river restoration. BioScience 52, 669–681 (2002).

  71. 71.

    Miao, C., Borthwick, A. G. L., Liu, H. & Liu, J. China’s policy on dams at the crossroads: removal or further construction? Water 7, 2349–2357 (2015).

  72. 72.

    Agoramoorthy, G. The future of India’s obsolete dams: time to review their safety and structural integrity. Futures 67, 22–25 (2015).

  73. 73.

    Wisser, D., Frolking, S., Hagen, S. & Bierkens, M. F. P. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs. Wat. Resour. Res. 49, 5732–5739 (2013).

  74. 74.

    Grill, G. et al. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 10, 015001 (2015).

  75. 75.

    Arnell, N. W. & Gosling, S. N. The impacts of climate change on river flood risk at the global scale. Clim. Change 134, 387–401 (2016).

  76. 76.

    Eisner, S. et al. An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins. Clim. Change 141, 401–417 (2017).

  77. 77.

    Winsemius, H. C. et al. Global drivers of future river flood risk. Nat. Clim. Change 6, 381–385 (2016).

  78. 78.

    Alfieri, L. et al. Global projections of river flood risk in a warmer world. Earth’s Future 5, 171–182 (2017).

  79. 79.

    Hirabayashi, Y. et al. Global flood risk under climate change. Nat. Clim. Change 3, 816–821 (2013).

  80. 80.

    Lehner, B., Döll, P., Alcamo, J., Henrichs, T. & Kaspar, F. Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Clim. Change 75, 273–299 (2006).

  81. 81.

    Hirabayashi, Y. & Kanae, S. First estimate of the future global population at risk of flooding. Hydrological Res. Lett. 3, 6–9 (2009).

  82. 82.

    Blöschl, G. et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).

  83. 83.

    Slater, L. J. & Wilby, R. L. Measuring the changing pulse of rivers. Science 357, 552 (2017).

  84. 84.

    Milly, P. C. D. et al. Stationarity is dead: whither water management? Science 319, 573–574 (2008).

  85. 85.

    Milly, P. C. D. et al. On critiques of “Stationarity is dead: whither water management?”. Wat. Resour. Res. 51, 7785–7789 (2015).

  86. 86.

    Bandyopadhyay, J. Securing the Himalayas as the water tower of Asia: an environmental perspective. Asia Policy 16, 45–50 (2013).

  87. 87.

    Bookhagen, B. & Burbank, D. W. Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. 115, F03019 (2010).

  88. 88.

    Darby, S. E. et al. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity. Nature 539, 276–279 (2016).

  89. 89.

    Redmond, G., Hodges, K. I., Mcsweeney, C., Jones, R. & Hein, D. Projected changes in tropical cyclones over Vietnam and the South China Sea using a 25 km regional climate model perturbed physics ensemble. Clim. Dyn. 45, 1983–2000 (2015).

  90. 90.

    Chapman, A. & Darby, S. E. Evaluating sustainable adaptation strategies for vulnerable mega-deltas using system dynamics modelling: rice agriculture in the Mekong Delta’s An Giang Province, Vietnam. Sci. Total Environ. 559, 326–338 (2016).

  91. 91.

    Schmitt, R. J. P., Rubin, Z. & Kondolf, G. M. Losing ground – scenarios of land loss as consequence of shifting sediment budgets in the Mekong Delta. Geomorphology 294, 58–69 (2017).

  92. 92.

    Arias, M. E. et al. Impacts of hydropower and climate change of drivers of ecological productivity of Southeast Asia’s most important wetland. Ecol. Modell. 272, 252–263 (2014).

  93. 93.

    Ward, P. J. et al. Strong influence of El Niño Southern Oscillation on flood risk around the world. Proc. Natl Acad. Sci. USA 111, 15659–15664 (2014).

  94. 94.

    Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).

  95. 95.

    Ng, J. Y., Turner, S. W. D. & Galelli, S. Influence of El Niño Southern Oscillation on hydropower production. Environ. Res. Lett. 12, 034010 (2017).

  96. 96.

    Dacre, H. F., Clark, P. A., Martinez-Alvarado, O., Stringer, M. A. & Lavers, D. A. How do atmospheric rivers form? Bull. Am. Meteorol. Soc. 96, 1243–1255 (2015).

  97. 97.

    Lavers, D. A. & Villarini, G. The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett. 40, 3259–3264 (2013).

  98. 98.

    Waliser, D. & Guan, B. Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci. 10, 179–183 (2017).

  99. 99.

    Paltan, H. et al. Global floods and water availability driven by atmospheric rivers. Geophys. Res. Lett. 44, 10387–10395 (2017).

  100. 100.

    Ye, B., Yang, D. & Kane, D. L. Changes in Lena River streamflow hydrology: human impacts versus natural variations. Wat. Resour. Res. 39, 1200 (2003).

  101. 101.

    Smith, L. C., Pavelsky, T. M., MacDonald, G. M., Shiklomanov, A. I. & Lammers, R. B. Rising minimum daily flows in northern Eurasian rivers: a growing influence of groundwater in the high-latitude hydrologic cycle. J. Geophys. Res. 112, G04S47 (2007).

  102. 102.

    McClelland, J. W., Holmes, R. M. & Peterson, B. J. Increasing river discharge in the Eurasian Artic: consideration of dams, permafrost thaw, and fires as potential agents of change. J. Geophys. Res. 109, D18102 (2004).

  103. 103.

    Anisimov, O., Vandenberghe, J., Lobanov, V. & Kondratiev, A. Predicting changes in alluvial channel patterns in North-European Russia under conditions of global warming. Geomorphology 98, 262–274 (2008).

  104. 104.

    Syvitski, J. P. M., Overeem, I., Brakenridge, R. & Hannon, M. Floods, floodplains, delta plains — a satellite imaging approach. Sedim. Geol. 267–268, 1–14 (2012).

  105. 105.

    Lewin, J. & Ashworth, P. J. The negative relief of large river floodplains. Earth Sci. Rev. 129, 1–23 (2014).

  106. 106.

    Lewin, J., Ashworth, P. J. & Strick, R. J. P. Spillage sedimentation on large river floodplains. Earth Surf. Process. Landf. 42, 290–305 (2017).

  107. 107.

    Bayley, P. B. Understanding large river-floodplain ecosystems. BioScience 45, 153–158 (1995).

  108. 108.

    Tockner, K., Schiemer, F. & Ward, J. V. Conservation by restoration: the management concept for a river-floodplain system on the Danube River in Austria. Aquat. Conserv. 8, 71–86 (1998).

  109. 109.

    Tockner, K., Pusch, M., Borchardt, D. & Lorang, M. S. Multiple stressors in coupled river-floodplain environments. Freshwat. Biol. 55(Suppl. 1), 135–151 (2010).

  110. 110.

    Junk, W. J. et al. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 5–22 (2014).

  111. 111.

    Opperman, J. J., Moyle, P. B., Larsen, E. W., Florsheim, J. L. & Manfree, A. D. Floodplains: Process and Management for Ecosystem Services (Univ. California Press, Oakland, 2017).

  112. 112.

    D’Elia, A. H., Liles, G. C., Viers, J. H. & Smart, D. R. Deep carbon storage potential of buried floodplain soils. Sci. Rep. 7, 8181 (2017).

  113. 113.

    Blakey, R. V., Kingsford, R. T., Law, B. S. & Stoklosa, J. Floodplain habitat is disproportionately important for bats in a large river basin. Biol. Conserv. 215, 1–17 (2017).

  114. 114.

    Schiemer, F., Baumgartner, C. & Tockner, K. Restoration of floodplain rivers: the ‘Danube Restoration Project’. Regul. Riv. Res. Manag. 15, 231–244 (1999).

  115. 115.

    Shared Waters – Joint Responsibilities ICPDR Annual Report 2015 (International Commission for the Protection of the Danube River, 2015).

  116. 116.

    Das, P. & Tamminga, K. R. The Ganges and the GAP: an assessment of efforts to clean a sacred river. Sustainability 4, 1647–1668 (2012).

  117. 117.

    Singh, S. K. & Rai, J. P. N. Pollution studies on River Ganga in Allahabad District. Poll. Res. 22, 469–472 (2003).

  118. 118.

    Mishra, A. Assessment of water quality using principal component analysis: a case study of the River Ganges. J. Wat. Chem. Technol. 32, 227–234 (2010).

  119. 119.

    Birol, E. & Das, S. Estimating the value of improved wastewater treatment: the case of River Ganga, India. J. Environ. Manage. 91, 2163–2171 (2010).

  120. 120.

    Samanta, S. Metal and pesticide pollution scenario in Ganga River system. Aquat. Ecosyst. Health Manage. 16, 454–464 (2013).

  121. 121.

    Mallet, V. River of Life, River of Death: The Ganges and India’s Future (Oxford Univ. Press, Oxford, 2017).

  122. 122.

    Kumar, D. River Ganges – historical, cultural and socioeconomic attributes. Aquat. Ecosys. Health Manage. 20, 8–20 (2017).

  123. 123.

    Tyagi, V. K. et al. Impairment in water quality of Ganges River and consequential health risks on account of mass ritualistic bathing. Desalin. Water Treat. 51, 2121–2129 (2013).

  124. 124.

    Vortmann, M., Balsari, S., Holman, S. R. & Greenough, P. G. Water, sanitation, and hygiene at the world’s largest mass gathering. Curr. Infect. Dis. Rep. 17, 5 (2015).

  125. 125.

    Lechner, A. et al. The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ. Poll. 188, 177–182 (2014).

  126. 126.

    Eerkes-Medrano, D., Thompson, R. C. & Aldridge, D. C. Microplastics in freshwater systems: a review of emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 75, 63–82 (2015).

  127. 127.

    Mani, T., Hauk, A., Walter, U. & Burkhardt-Holm, P. Microplastics along the Rhine River. Sci. Rep. 5, 17988 (2015).

  128. 128.

    Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).

  129. 129.

    Schmidt, C., Krauth, T. & Wagner, S. Export of plastic debris by rivers into the sea. Environ. Sci. Technol. 51, 12246–12253 (2017).

  130. 130.

    Siegfried, M., Koelmans, A. A., Besseling, E. & Kroeze, C. Export of microplastics from land to sea. A modelling approach. Water Res. 127, 249–257 (2017).

  131. 131.

    Hurley, R., Woodward, J. & Rothwell, J. J. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat. Geosci. 11, 251–257 (2018).

  132. 132.

    Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).

  133. 133.

    Van Vliet, M. T. H. et al. Coupled daily streamflow and water temperature modelling in large river basins. Hydrol. Earth Syst. Sci. 156, 4303–4321 (2012).

  134. 134.

    Van Vliet, M. T. H. et al. Global river discharge and water temperature under climate change. Glob. Environ. Change 23, 450–464 (2013).

  135. 135.

    Caissie, D. The thermal regime of rivers: a review. Freshwat. Biol. 51, 1389–1406 (2006).

  136. 136.

    Gupta, J. & ven der Zaag, P. Interbasin water transfers and integrated water resources management: where engineering, science and politics interlock. Phys. Chem. Earth 33, 28–40 (2008).

  137. 137.

    Pittock, J., Meng, J.-h, Geiger, M. & Chapagain, A. K. Interbasin Water Transfers and Water Security in a Changing World: A Solution or a Pipedream? WWF Discussion Paper (WWF Frankfurt, 2009).

  138. 138.

    Webber, M., Crow-Miller, B. & Rogers, S. The South–North water transfer project: remaking the geography of China. Reg. Stud. 51, 370–382 (2017).

  139. 139.

    Fairless, D. Muddy waters. Nature 452, 278–281 (2008).

  140. 140.

    Pandya, A. B. Interlinking of rivers. Water Energy Int. 69, 26–34 (2012).

  141. 141.

    Mehta, D. & Mehta, N. K. Interlinking of rivers in India: issues and challenges. Geo-Eco-Marina 19, 137–143 (2013).

  142. 142.

    Agoramoorthy, G. India’s river interlinking project: will it benefit or backfire? Curr. Sci. 107, 951 (2014).

  143. 143.

    Bagla, P. Indian plans the grandest of canal networks. Science 345, 128 (2014).

  144. 144.

    Verdhen, A. Intra and inter basin linking of rivers in water resources management. J. Sci. Appl. Res. 75, 150–155 (2016).

  145. 145.

    Roman, P. The São Francisco water transfer in Brazil: tribulations of a megaproject through constraints and controversy. Water Alternatives 10, 395–419 (2017).

  146. 146.

    Gain, A. K. & Giupponi, C. Impact of the Farakka Dam on thresholds of the hydrologic flow regime in the lower Ganges River Basin (Bangladesh). Water 6, 2501–2518 (2014).

  147. 147.

    Mukherjee, B. & Saha, U. D. Teesta barrage project — a brief review of unattained goals and associated changes. Int. J. Sci. Res. 5, 2027–2032 (2016).

  148. 148.

    Lakra, W. S., Sarkar, U. K., Dubey, V. K., Sani, R. & Pandey, A. River inter linking in India: status, issues, projects and implications on aquatic ecosystems and freshwater fish diversity. Rev. Fish Biol. Fisheries 21, 463–479 (2011).

  149. 149.

    Arfanuzzaman, Md & Ahmad, Q. Assessing the regional food insecurity in Bangladesh due to irrigation water shortage in the Teesta catchment. Water Policy 18, 304–317 (2016).

  150. 150.

    Graefe, O. River basins as new environmental regions? The depolitization of water management. Procedia Soc. Behav. Sci. 14, 24–27 (2011).

  151. 151.

    Wada, Y., van Beek, L. P. H., Wanders, N. & Bierkens, M. F. P. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 8, 034036 (2013).

  152. 152.

    Strayer, D. L. Twenty years of Zebra mussels: lessons from the mollusc that made headlines. Front. Eco. Environ. 7, 135–141 (2009).

  153. 153.

    Hinterthuer, A. The explosive spread of Asian carp. BioScience 62, 220–224 (2012).

  154. 154.

    Bernauer, D. & Jansen, W. Recent invasions of alien macroinvertebrates and loss of native species in the upper Rhine river, Germany. Aquat. Invasions 1, 55–71 (2006).

  155. 155.

    Leuven, R. S. E. W. et al. The River Rhine: a global highway for dispersal of aquatic invasive species. Biol. Invasions 11, 1989–2008 (2009).

  156. 156.

    Asian Carp Action Plan (ACRCC, 2017); http://www.asiancarp.us/Documents/2017ActionPlan.pdf

  157. 157.

    Parker, A. D. et al. Fish distribution, abundance, and behavioral interactions within a large electric dispersal barrier designed to prevent Asian carp movement. Can. J. Fish. Aquat. Sci. 73, 1060–1071 (2016).

  158. 158.

    Rahel, F. J. & Olden, J. D. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 22, 521–533 (2008).

  159. 159.

    Stromberg, J. C., Chew, M. K., Nagler, P. L. & Glenn, E. P. Changing perceptions of change: the role of scientists in Tamarix and river management. Restor. Ecol. 17, 177–186 (2009).

  160. 160.

    Hoeinghaus, D. J. in Encyclopedia of the Anthropocene Vol. 3 (eds DellaSalla, D. A. & Goldstein, M. J.) 241–248 (Elsevier, Amsterdam, 2018).

  161. 161.

    Dynesius, M. & Nilsson, C. Fragmentation and flow regulation of river systems in the northern third of the world. Science 266, 753–762 (1994).

  162. 162.

    Nilsson, C., Reidy, C. A., Dynesius, M. & Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 308, 405–408 (2005).

  163. 163.

    Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

  164. 164.

    Grill, G. et al. Development of new indicators to evaluate river fragmentation and flow regulation at large scales: a case study for the Mekong River Basin. Ecol Indic. 45, 148–159 (2014).

  165. 165.

    Sosnowski, A., Ghoneim, E., Burke, J. J., Hines, E. & Halls, J. Remote regions, remote data: a spatial investigation of precipitation, dynamic land covers, and conflict in the Sudd wetland of South Sudan. Appl. Geogr. 69, 59–64 (2016).

  166. 166.

    Hamilton, S. Potential effects of a major navigation project (Paraguay–Paraná Hidrovía) on inundation in the Pantanal floodplains. Regul. Rivers: Res. Manage. 15, 289–299 (1999).

  167. 167.

    Gottgens, J. F. et al. The Paraguay-Paraná Hidrovía: protecting the Pantanal with lessons from the past. BioScience 51, 301–308 (2001).

  168. 168.

    Junk, W. J. & de Cunha, C. N. Pantanal: a large South American wetland at a crossroads. Ecol. Eng. 24, 391–401 (2005).

  169. 169.

    Torres, A., Brandt, J., Lear, K. & Liu, J. A looming tragedy of the sand commons. Science 357, 970–971 (2017).

  170. 170.

    Lu, X. X., Zhang, S. R., Xie, S. P. & Ma, P. K. Rapid incision of the lower Pearl River (China) since the 1990s as a consequence of sediment depletion. Hydrol. Earth Syst. Sci. 11, 1897–1906 (2007).

  171. 171.

    Xiqing, C., Qiaoju, Z. & Erfeng, Z. In-channel sand extraction from the mid-lower Yangtze channels and its management: problems and challenges. J. Environ. Plan. Manage. 49, 309–320 (2006).

  172. 172.

    Kondolf, G. M. et al. Changing sediment budget of the Mekong: cumulative threats and management strategies for a large river basin. Sci. Total Environ. 625, 114–134 (2018).

  173. 173.

    Bravard, J.-P., Goichot, M. & Gaillot, S. Geography of sand and gravel mining in the lower Mekong River. EchoGéo 26, 13659 (2013).

  174. 174.

    Brunier, G., Anthony, E. J., Goichot, M., Provonsal, M. & Dussouillez, P. Recent morphological changes in the Mekong and Bassac river channels, Mekong Delta: the marked impact of river-bed mining and implications for delta destabilisation. Geomorphology 224, 177–191 (2014).

  175. 175.

    Best, J. L., Ashworth, P. J., Sarker, M. H. & Roden, J. E. in Large Rivers: Geomorphology and Management (ed. Gupta, A.) 395–430 (Wiley and Sons, Chichester, 2007).

  176. 176.

    Sarker, M. H., Huque, I. & Lam, M. Rivers, chars and char dwellers of Bangladesh. Int. J. River Basin Manage. 1, 61–80 (2003).

  177. 177.

    Sarker, M. H., Thorne, C. R., Aktar, M. N. & Ferdous, M. R. Morpho-dynamics of the Brahmaputra–Jamuna River, Bangladesh. Geomorphology 215, 45–59 (2014).

  178. 178.

    Baki, A. B. M. & Gan, T. Y. Riverbank migration and island dynamics of the braided Jamuna River of the Ganges–Brahmaputra basin using multi-spectral Landsat images. Quat. Int. 263, 148–161 (2012).

  179. 179.

    Sarker, M. H., Akter, J. & Ferdaous, M. R. River bank protection measures in the Brahmaputra-Jamuna River: Bangladesh experience. In Proc. Int. Conf. River, Society and Environment (Dibrugarh University, India, 2011); https://www.researchgate.net/publication/263125674

  180. 180.

    Oberhagemann, K. & Hossain, M. M. Geotextile bag revetments for large rivers in Bangladesh. Geotext. Geomembr. 29, 202–214 (2010).

  181. 181.

    Feldman, D. L. Water Politics: Governing Our Most Precious Resource (Polity Press, Cambridge, 2017).

  182. 182.

    Myint, T. Governing International Rivers: Polycentric Politics in the Mekong and the Rhine (Edward Elgar, Cheltenham, 2012).

  183. 183.

    Campbell, I. C. Integrated management of large river and their basins. Ecohydrol. Hydrobiol. 16, 203–214 (2016).

  184. 184.

    De Stefano, L. et al. Climate change and the institutional resilience of international river basins. J. Peace Res. 49, 193–29 (2012).

  185. 185.

    Garrick, D. et al. Managing hydroclimatic risks in federal rivers: a diagnostic assessment. Phil. Trans. R. Soc. A 371, 20120415 (2013).

  186. 186.

    Wang, Y., Mukherjje, M., Wu, D. & Wu, X. Combating river pollution in China and India: policy measures and governance challenges. Water Policy 18, 122–137 (2016).

  187. 187.

    Liu, J. & Yang, W. Water sustainability for China and beyond. Science 337, 649–650 (2016).

  188. 188.

    Yang, H., Flower, R. J. & Thompson, J. R. Sustaining China’s water resources. Science 339, 141 (2013).

  189. 189.

    Metawie, A. F. History of co-operation in the Nile Basin. Wat. Resour. Dev. 20, 47–63 (2004).

  190. 190.

    Nicol, A. & Cascão, A. E. Against the flow – new power dynamics and upstream mobilisation in the Nile Basin. Proc. Afr. Politic. Econ. 38, 317–325 (2011).

  191. 191.

    Demin, A. P. Distribution of water resources: a case study of the transboundary Nile River. Geogr. Nat. Resour. 36, 198–205 (2015).

  192. 192.

    Hebteyes, B. C., El-bardisy, H. A. E. H., Amer, S. A., Schneider, V. R. & Ward, F. A. Mutually beneficial and sustainable management of Ethiopian and Egyptian dams in the Nile Basin. J. Hydrol. 529, 1235–1246 (2015).

  193. 193.

    Tawfik, R. Reconsidering counter-hegemonic dam projects: the case of the Grand Ethiopian Renaissance Dam. Water Policy 18, 1033–1052 (2016).

  194. 194.

    Barnes, J. The future of the Nile: climate change, land use, infrastructure management, and treaty negotiations in a transboundary river basin. WIREs Clim. Change 8, e449 (2017).

  195. 195.

    Menga, F. Hydropolis: reinterpreting the polis in water politics. Polit. Geogr. 60, 100–109 (2017).

  196. 196.

    Taye, M. T., Tadesse, T., Senay, G. B. & Block, P. The Grand Ethiopian Renaissance Dam: source of cooperation or conflict? J. Wat. Resour. Plan. Manage. 142, 02516001–1 (2016).

  197. 197.

    The ‘water war’ brewing over the new River Nile dam. BBC News http://www.bbc.com/news/world-africa-43170408 (24 February 2018).

  198. 198.

    El-Nashar, W. Y. & Elyamany, A. H. Managing risks of the Grand Ethiopian Renaissance Dam on Egypt. Ain Shams Eng. J. https://doi.org/10.1016/j.asej.2017.06.004 (2017).

  199. 199.

    Gleason, C. J., Garambois, P. A. & Durand, M. T. Tracking river flows from space. EOS 99, 32–36 (2018).

  200. 200.

    Li, Q., Zhong, B., Luo, Z. & Yao, C. GRACE-based estimates of water discharge over the Yellow River basin. Geodesy Geodynam. 7, 187–193 (2016).

  201. 201.

    Wang, S., Zhou, F. & Russell, H. A. J. Estimating snow mass and peak river flows for the Mackenzie River basin using GRACE satellite observations. Remote Sens. 9, 9030256 (2017).

  202. 202.

    Alfieri, L. et al. A global network for operational flood risk reduction. Environ. Sci. Policy 84, 149–158 (2018).

  203. 203.

    Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

  204. 204.

    Blancamaria, S., Lettenmaier, D. P. & Pavelsky, T. M. The SWOT Mission and its capabilities for land hydrology. Surv. Geophys. 37, 307–337 (2016).

  205. 205.

    Park, E. & Latrubesse, E. M. Modeling suspended sediment distribution patterns of the Amazon River using MODIS data. Remote Sensing Environ. 147, 232–242 (2014).

  206. 206.

    Legleiter, C. J. Calibrating remotely sensed river bathymetry in the absence of field measurements: Flow REsistance Equation-Based Imaging of River Depths (FREEBIRD). Water Resour. Res. 51, 2865–2884 (2015).

  207. 207.

    Cohen, S., Kettner, A. J., Syvitski, J. P. M. & Fekete, B. M. WBMsed, a distributed global-scale riverine sediment flux model: model description and validation. Comp. Geosci. 53, 80–93 (2013).

  208. 208.

    Cohen, S., Kettner, A. J. & Syvitski, J. P. M. Global suspended sediment and water discharge dynamics between 1960 and 2010: continental trends and intra-basin sensitivity. Glob. Planet. Change 115, 44–58 (2014).

  209. 209.

    Maavara, T. et al. Global phosphorus retention by river damming. Proc. Natl Acad. Sci. USA 51, 15603–15608 (2015).

  210. 210.

    Li, M. et al. The carbon flux of global rivers: a re-evaluation of amount and spatial patterns. Ecol. Indic. 80, 40–51 (2017).

  211. 211.

    Nicholas, A. P. Morphodynamic diversity of the world’s largest rivers. Geology 41, 475–478 (2013).

  212. 212.

    Schuurman, F., Marra, W. A. & Kleinhans, M. G. Physics-based modeling of large braided sand-bed rivers: bar pattern formation, dynamics, and sensitivity. J. Geophys. Res. Earth Surf. 118, 2509–2527 (2013).

  213. 213.

    Gleason, C. J. & Hamdam, A. N. Crossing the (watershed) divide: satellite data and the changing politics of international river basins. Geogr. J. 183, 2–15 (2017).

  214. 214.

    Kondolf, M., Rubin, Z. K. & Minear, J. T. Dams on the Mekong: cumulative sediment starvation. Water Resour. Res. 50, 5158–5169 (2014).

  215. 215.

    Tharme, R. E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 19, 397–441 (2003).

  216. 216.

    Arthington, A. H., Bunn, S. E., Poff, N. L. & Naiman, R. J. The challenge of providing environmental flow rules to sustain river ecosystems. Ecol. Appl. 16, 1311–1318 (2006).

  217. 217.

    Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwat. Biol. 55, 147–170 (2010).

  218. 218.

    Arthington, A. H. Environmental Flows: Saving Rivers in the Third Millennium. (Univ. California Press, Berkeley, 2012).

  219. 219.

    Acreman, M. et al. Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Front. Ecol. Environ. 12, 466–473 (2014).

  220. 220.

    Acreman, M. et al. The changing role of ecohydrological science in guiding environmental flows. Hydrological Sci. J. 59, 433–450 (2014).

  221. 221.

    Acreman, M. Environmental flows—basics for novices. WIREs Water 3, 622–628 (2016).

  222. 222.

    The Brisbane Declaration (2007) (International River Foundation, accessed 27 November 2018); http://riversymposium.com/about/brisbane-declaration/.

  223. 223.

    Poff, N. L. et al. The natural flow regime: a paradigm for river conservation and restoration. BioScience 47, 769–784 (1997).

  224. 224.

    Poff, N. L. & Schmidt, J. C. How dams can go with the flow. Science 353, 1099–1110 (2016).

  225. 225.

    Poff, N. L. & Olden, J. D. Can dams be designed for sustainability? Science 358, 1252–1253 (2017).

  226. 226.

    Sabo, J. L. et al. Designing river flows to improve food security futures in the Lower Mekong Basin. Science 358, eaao1053 (2017).

  227. 227.

    Halls, A. S. & Moyle, P. B. Comment on “Designing river flows to improve food security futures in the Lower Mekong Basin”. Science 361, eaat1225 (2018).

  228. 228.

    Williams, J. G. Comment on “Designing river flows to improve food security futures in the Lower Mekong Basin”. Science 361, eaat1989 (2018).

  229. 229.

    Holtgrieve, G. W. et al. Response to comments on “Designing river flows to improve food security futures in the Lower Mekong Basin”. Science 361, eaat1477 (2018).

  230. 230.

    Shenton, W., Bond, N. R., Yen, J. D. L. & Nally, R. M. Putting the “ecology” into environmental flows: ecological dynamics and demographic modelling. Environ. Manage. 50, 1–10 (2012).

  231. 231.

    Jian, S. K. & Kumar, P. Environmental flows in India: towards sustainable water management. Hydrological Sci. J. 59, 751–769 (2014).

  232. 232.

    Pahl-Wostl, C. et al. Environmental flows and water governance: managing sustainable water uses. Curr. Opin. Environ. Sustainability 5, 341–351 (2013).

  233. 233.

    Leopold, L. B. A reverence for rivers. Geology 5, 429–430 (1977).

  234. 234.

    Vienna Declaration on the Status and Future of the World’s Large Rivers (World’s Large Rivers Conferences, 2011); http://worldslargerivers.boku.ac.at/wlr/images/stories/ecolabel/Vienna_Declaration.pdf

  235. 235.

    Latrubesse, E. M. et al. Damming the rivers of the Amazon Basin. Nature 546, 363–369 (2017).

  236. 236.

    Forsberg, B. R. et al. The potential impact of new Amazon dams on Amazon fluvial ecosystems. PLoS ONE 12, e0182254 (2017).

  237. 237.

    Anderson, E. P. et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4, eaao1642 (2018).

  238. 238.

    Misra, A. K. et al. Proposed river-linking project of India: a boon or bane to nature. Environ. Geol. 51, 1361–1376 (2007).

  239. 239.

    Verma, S., Kampman, D. A., van der Zaag, P. & Hoekstra, A. Y. Going against the flow: a critical analysis of inter-state virtual water trade in the context of India’s National River Linking Program. Phys. Chem. Earth 34, 261–269 (2009).

  240. 240.

    Jain, S. K. Water resource management in India. Curr. Sci. 13, 1211–1212 (2017).

  241. 241.

    Grant, E. H. C. et al. Interbasin water transfer, riverine connectivity, and spatial controls on fish biodiversity. PLoS ONE 7, e34170 (2012).

  242. 242.

    Higgins, S., Overeem, I., Rogers, K. & Kalina, E. River linking in India: downstream impacts on water discharge and suspended sediment transport to deltas. Elem. Sci. Anth. 6, 20 (2018).

  243. 243.

    Fan, H., He, D. & Wang, H. Environmental consequences of damming the mainstream Lancang-Mekong Review: a review. Earth Sci. Rev. 146, 77–91 (2015).

  244. 244.

    Räsänan, T. et al. Observed river discharge changes due to hydropower operations in the Upper Mekong Basin. J. Hydrology 545, (28–41 (2017).

  245. 245.

    Grumbine, R. E. & Xu, J. Mekong hydropower development. Science 332, 177–179 (2011).

  246. 246.

    Requiem for a river. The Economist http://www.economist.com/news/essays/21689225-can-one-world-s-great-waterways-survive-its-development (11 February 2016).

  247. 247.

    Kummu, M. & Sarkkula, J. Impact of the Mekong River flow alteration on the Tonle Sap flood pulse. Ambio 37, 185–192 (2008).

  248. 248.

    Chapman, A., Darby, S. E., Hông, H. M., Tompkins, E. L. & Van, T. P. D. Adaptation and development trade-offs: fluvial sediment deposition and the sustainability of rice-cropping in the An Giang Province, Mekong Delta. Clim. Change 137, 593–608 (2016).

  249. 249.

    Barnett, J., Rogers, S., Webber, M., Finlayson, B. & Wang, M. Transfer project cannot meet China’s water needs. Nature 527, 295–297 (2015).

  250. 250.

    Milliman, J. D. & Farnsworth, K. L. River Discharge to the Coastal Ocean: A Global Synthesis (Cambridge Univ. Press, Cambridge, 2011).

  251. 251.

    Volga: Russia’s National River (WWF, accessed 25 November 2018); https://wwf.panda.org/our_work/water/rivers/volga/

  252. 252.

    Murray-Darling Basin Physical Information (Australian Government Bureau of Meteorology, accessed 10 January 2018); http://www.bom.gov.au/water/nwa/2014/mdb/contextual/physicalinformation.shtml

  253. 253.

    Górski, K. et al. Post-damming flow regime development in a large lowland river (Volga, Russian Federation): implications for floodplain inundation and fisheries. River Res. Appl. 28, 1121–1134 (2012).

  254. 254.

    Stolf, R., De, S., Piedada, S. M., Da Silva, J. R., Da Sliva, L. C. F. & Maniero, M. A. Water transfer from São Francisco river to semiarid northeast of Brazil: technical data, environmental impacts, survey of opinion about the amount to be transferred. Engenharia Agrícola Jaboticabal 32, 998–1010 (2012).

  255. 255.

    Syvitski, J. P. M., Cohen, S., Kettner, A. J. & Brackenridge, G. R. How important and different are tropical rivers? An overview. Geomorphology 227, 5–17 (2014).

  256. 256.

    O’Connor, J. E. & Costa, J. E. The World’s Largest Floods, Past and Present—Their Causes and Magnitudes U.S. Geological Survey Circular 1254 (USGS, 2004).

  257. 257.

    Orfeo, O. & Steveaux, J. Hydraulic and morphological characteristics of middle and upper reaches of the Paraná River (Argentina and Brazil). Geomorphology 44, 309–322 (2002).

  258. 258.

    Chowdhury, M. R. An assessment of flood forecasting in Bangladesh: the experience of the 1998 flood. Nat. Hazards 22, 139–169 (2000).

  259. 259.

    Zhu, Y. et al. Flood simulations and uncertainty analysis for the Pearl River basin using the coupled land surface and hydrological model system. Water 9, 9060391 (2017).

  260. 260.

    Simmance, A. Environmental Flows for the Ayeyarwady (Irrawaddy) River Basin, Myanmar (UNESCO-IHE Online Course on Environmental Flows, 2013).

  261. 261.

    Higgins, A., Restrepo, J. C., Ortiz, J. C., Pierini, J. & Otero, L. Suspended sediment transport in the Magdalena River (Columbia, South America): hydrologic regime, rating parameters and effective discharge variability. Int. J. Sediment Res. 31, 25–35 (2016).

  262. 262.

    Pinter, N., van der Ploeg, R. R., Schweigart, P. & Hoefer, G. Flood magnification in the River Rhine. Hydrol. Process. 20, 147–164 (2006).

  263. 263.

    Revenga, C., Murray, S., Abramovitz, J. & Hammond, A. Watersheds of the World: Ecological Value and Vulnerability (World Resources Institute, Washington D.C., 1998).

Download references

Acknowledgements

I am indebted to C. Simpson for his exceptional graphical and database skills that were essential in preparing the figures, and I am very grateful for the provision of papers, figures and data from their own research by N. Arnell, P. Glennie, Y. Hirabayashi, D. Hoeinghaus, E. Latrubesse, H. Paltan and C. Zarfl.

I am also truly indebted to my colleagues who I have been incredibly fortunate to work with over many years, and who have provided considerable insights into, and opportunities to study, some of the world’s largest rivers. Writing of this paper was aided by a Diamond Jubilee International Visiting Fellowship at the University of Southampton, UK, and its publication has been supported by the Jack and Richard Threet Chair in Sedimentary Geology at the University of Illinois, USA.

Author information

Affiliations

  1. Departments of Geology, Geography and Geographic Information Science, Mechanical Science and Engineering and Ven Te Chow Hydrosystems Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA

    • Jim Best

Authors

  1. Search for Jim Best in:

Competing interests

The author declares no competing interests.

Corresponding author

Correspondence to Jim Best.

Supplementary Information

  1. Supplementary Information

    Supplementary Figures and Discussion.

  2. Supplementary Data

    Data summary for world’s biggest rivers.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41561-018-0262-x